scholarly journals Development of a reverse transcription recombinase polymerase based isothermal amplification coupled with lateral flow immunochromatographic assay (CTV-RT-RPA-LFICA) for rapid detection of Citrus tristeza virus

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Dilip Kumar Ghosh ◽  
Sunil B. Kokane ◽  
Siddarame Gowda

AbstractTristeza is a highly destructive disease of citrus caused by the phloem-limited, flexuous filamentous Citrus tristeza virus (CTV) in the genus Closterovirus and the family Closteroviridae. It has been a major constraint for higher productivity and has destroyed millions of citrus trees globally. CTV is graft transmissible and spread through use of virus infected nursery plants. Therefore, virus detection by using specific and reliable diagnostic tools is very important to mitigate disease outbreaks. Currently, the standard molecular techniques for CTV detection include RT-PCR and RT-qPCR. These diagnostic methods are highly sensitive but time consuming, labor intensive and require sophisticated expensive instruments, thus not suitable for point-of-care use. In the present study, we report the development of a rapid, sensitive, robust, reliable, and highly specific reverse transcription-RPA technique coupled with a lateral flow immunochromatographic assay (CTV-RT-RPA-LFICA). RT-RPA technique was standardized to amplify the coat protein gene of CTV (CTV-p25) and detect double labeled amplicons on a sandwich immunoassay by designing specific labeled primer pair and probe combinations. The optimally performing primer set (CTRPA-F1/CTRPA-R9-Btn) and the corresponding TwistAmp nfo probe (CTRPA-Probe) was optimized for temperature and reaction time using purified cDNA and viral RNA as template. The sensitivity of the developed assay was compared with other detection techniques using in vitro-transcribed RNA. The efficacy and specificity of the assay was evaluated using CTV positive controls, healthy samples, field grown citrus plants of unknown status, and other virus and bacterial pathogens that infect citrus plants. The RT-RPA-LFICA was able to detect ≤ 141 fg of RNA when cDNA used as a template. The assay detected ≤ 0.23 ng/µl of CTV RNA when directly used as template without cross-reactivity with other citrus pathogens. Best results were achieved at the isothermal temperature of 40 °C within 15–20 min. The study demonstrated that RT-RPA-LFICA has potential to become an improved detection technique for end users in bud-wood certification and quarantine programs and a promising platform for rapid point-of-care diagnostics for citrus farmers and small nurseries in low resource settings.

2017 ◽  
Vol 45 (3) ◽  
pp. 333-340 ◽  
Author(s):  
Yogita Maheshwari ◽  
Vijayanandraj Selvaraj ◽  
Subhas Hajeri ◽  
Chandrika Ramadugu ◽  
Manjunath L. Keremane ◽  
...  

2010 ◽  
Vol 100 (10) ◽  
pp. 1077-1088 ◽  
Author(s):  
Avijit Roy ◽  
G. Ananthakrishnan ◽  
John S. Hartung ◽  
R. H. Brlansky

The emerging diversity of Citrus tristeza virus (CTV) genotypes has complicated detection and diagnostic measures and prompted the search for new differentiation methods. To simplify the identification and differentiation of CTV genotypes, a multiplex reverse-transcription polymerase chain reaction (RT-PCR) technique for the screening of CTV isolates was developed. Variable regions within the open reading frame (ORF)-1a of diverse CTV genotypes were identified to develop first a simplex (S) and then a hexaplex (H) RT-PCR. CTV isolates have been grouped previously into five genotypes (namely, T3, T30, T36, VT, and B165) based on the nucleotide sequence comparisons and phylogenetic analyses. Nucleotide sequences from GenBank were used to design species and genotype-specific primers (GSPs). The GSPs were initially used for reliable detection of all CTV genotypes using S-RT-PCR. Furthermore, detection of all five recognized CTV genotypes was established using the H-RT-PCR. Six amplicons, one generic to all CTV isolates and one for each of the five recognized genotypes, were identified on the basis of their size and were confirmed by sequence analysis. In all, 175 CTV isolates from 29 citrus-growing countries were successfully analyzed by S- and H-RT-PCR. Of these, 97 isolates contained T36 genotypes, 95 contained T3 genotypes, 76 contained T30 genotypes, 71 contained VT genotypes, and 24 contained B165 genotype isolates. In total, 126 isolates contained mixed infections of 2 to 5 of the known CTV genotypes. Two of the CTV isolates could not be assigned to a known genotype. H-RT-PCR provides a sensitive, specific, reliable, and rapid way to screen for CTV genotypes compared with other methods for CTV genotype detection. Efficient identification of CTV genotypes will facilitate a better understanding of CTV isolates, including the possible interaction of different genotypes in causing or preventing diseases. The methods described can also be used in virus-free citrus propagation programs and in the development of CTV-resistant cultivars.


2010 ◽  
Vol 100 (4) ◽  
pp. 319-327 ◽  
Author(s):  
R. K. Yokomi ◽  
M. Saponari ◽  
P. J. Sieburth

A multiplex Taqman-based real-time reverse transcription (RT) polymerase chain reaction (PCR) assay was developed to identify potential severe strains of Citrus tristeza virus (CTV) and separate genotypes that react with the monoclonal antibody MCA13. Three strain-specific probes were developed using intergene sequences between the major and minor coat protein genes (CPi) in a multiplex reaction. Probe CPi-VT3 was designed for VT and T3 genotypes; probe CPi-T36 for T36 genotypes; and probe CPi-T36-NS to identify isolates in an outgroup clade of T36-like genotypes mild in California. Total nucleic acids extracted by chromatography on silica particles, sodium dodecyl sulfate-potassium acetate, and CTV virion immunocapture all yielded high quality templates for real-time PCR detection of CTV. These assays successfully differentiated CTV isolates from California, Florida, and a large panel of CTV isolates from an international collection maintained in Beltsville, MD. The utility of the assay was validated using field isolates collected in California and Florida.


Sign in / Sign up

Export Citation Format

Share Document