scholarly journals Actively tunable THz filter based on an electromagnetically induced transparency analog hybridized with a MEMS metamaterial

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ying Huang ◽  
Kenta Nakamura ◽  
Yuma Takida ◽  
Hiroaki Minamide ◽  
Kazuhiro Hane ◽  
...  

AbstractElectromagnetically induced transparency (EIT) analogs in classical oscillator systems have been investigated due to their potential in optical applications such as nonlinear devices and the slow-light field. Metamaterials are good candidates that utilize EIT-like effects to regulate optical light. Here, an actively reconfigurable EIT metamaterial for controlling THz waves, which consists of a movable bar and a fixed wire pair, is numerically and experimentally proposed. By changing the distance between the bar and wire pair through microelectromechanical system (MEMS) technology, the metamaterial can controllably regulate the EIT behavior to manipulate the waves around 1.832 THz, serving as a dynamic filter. A high transmittance modulation rate of 38.8% is obtained by applying a drive voltage to the MEMS actuator. The dispersion properties and polarization of the metamaterial are also investigated. Since this filter is readily miniaturized and integrated by taking advantage of MEMS, it is expected to significantly promote the development of THz-related practical applications such as THz biological detection and THz communications.

2020 ◽  
Vol 9 (5) ◽  
pp. 243-246
Author(s):  
Pei-Chen Kuan ◽  
Chang Huang ◽  
Shau-Yu Lan

AbstractWe implement slow-light under electromagnetically induced transparency condition to measure the motion of cold atoms in an optical lattice undergoing Bloch oscillation. The motion of atoms is mapped out through the phase shift of light without perturbing the external and internal state of the atoms. Our results can be used to construct a continuous motional sensor of cold atoms.


2013 ◽  
Vol 26 (7) ◽  
pp. 074004 ◽  
Author(s):  
B B Jin ◽  
J B Wu ◽  
C H Zhang ◽  
X Q Jia ◽  
T Jia ◽  
...  

Author(s):  
Renxia Ning ◽  
Zhiqiang Xiao ◽  
Zhenhai Chen ◽  
Wei Huang

AbstractA multilayer structure of a square ring of graphene with nesting vanadium dioxide (VO2) was investigated in this study. This structure exhibits electromagnetically induced transparency (EIT), which stems from a bright mode coupling with a dark mode. The permittivity values of graphene and VO2 can be modulated via chemical potential and temperature, respectively. The EIT effect can be tuned based on the chemical potential of graphene and temperature of VO2, resulting in a dual-tunable EIT effect. Simulation results confirmed that this dual-tunable EIT phenomenon is insensitive to polarization. These results may have potential applications in terahertz devices, such as slow light devices, switching devices, and sensors.


Optik ◽  
2020 ◽  
Vol 200 ◽  
pp. 163398 ◽  
Author(s):  
Chengyao Zhang ◽  
Yue Wang ◽  
Yuan Yao ◽  
Ling Tian ◽  
Zhaoxin Geng ◽  
...  

2014 ◽  
Vol 39 (12) ◽  
pp. 3539 ◽  
Author(s):  
Kun Zhang ◽  
Cheng Wang ◽  
Ling Qin ◽  
Ru-Wen Peng ◽  
Di-Hu Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document