scholarly journals Laser pulse-electron beam synergy effect on electron self-injection and higher energy gain in laser wakefield accelerators

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sahar Barzegar ◽  
Ali Reza Niknam

AbstractA new scheme for injection and acceleration of electrons in wakefield accelerators is suggested based on the co-action of a laser pulse and an electron beam. This synergy leads to stronger wakefield generation and higher energy gain in the bubble regime. The strong deformation of the whole bubble leads to electron self-injection at lower laser powers and lower plasma densities. To predict the practical ranges of electron beam and laser pulse parameters an interpretive model is proposed. The effects of altering the initial electron beam position on self-trapping of plasma electrons are studied. It is observed that an ultra-short (25 fs), high charge (340 pC), 1 GeV electron bunch is produced by injection of a 280 pC electron beam in the decelerating phase of the 75 TW laser driven wakefield.

2021 ◽  
Author(s):  
Devki Nandan Gupta ◽  
Samuel Robert Yoffe ◽  
Arohi Jain ◽  
Bernhard Ersfeld ◽  
Dino Anthony Jaroszynski

Abstract Achieving high quality electron beams in laser wakefield accelerators requires stable guiding of the intense driving laser pulse, which is challenging because of mode mismatching due to relativistic self-focusing. Here we show how an intense pre-pulse can be used to prepare the phase-space distribution of plasma electrons encountered by a trailing laser pulse so that it produces its own well-matched guiding channel, while minimising wakefield evolution. Controlling the propagation of high intensity laser pulses is an essential step in developing useful wakefield accelerators and compact radiation sources.


2021 ◽  
Author(s):  
Devki N. Gupta ◽  
Samuel R. Yoffe ◽  
Arohi Jain ◽  
Bernhard Ersfeld ◽  
Dino A. Jaroszynski

Abstract Achieving high quality electron beams in laser wakefield accelerators requires stable guiding of the intense driving laser pulse, which is challenging because of mode mismatching due to relativistic self-focusing. Here we show how an intense pre-pulse can be used to prepare the phase-space distribution of plasma electrons encountered by a trailing laser pulse so that it produces its own well-matched guiding channel, while minimising wakefield evolution. Controlling the propagation of high intensity laser pulses is an essential step in developing useful wakefield accelerators and compact radiation sources.


2012 ◽  
Vol 30 (4) ◽  
pp. 575-582 ◽  
Author(s):  
K.K. Magesh Kumar ◽  
V.K. Tripathi

AbstractA model of bubble regime electron acceleration by an intense laser pulse in non uniform plasma channel is developed. The plasma electrons at the front of the pulse and slightly off the laser axis in the plasma channel, experience axial and radial ponderomotive and space charge forces, creating an electron evacuated non uniform ion bubble. The expelled electrons travel along the surface of the bubble and reach the stagnation point, forming an electron sphere of radius re. The electrons of this sphere are pulled into the ion bubble and are accelerated to high energies. The Lorentz boosted frame enabled us to calculate energy gain of a test electron inside the bubble.


2019 ◽  
Vol 61 (6) ◽  
pp. 065012
Author(s):  
K Behm ◽  
A Hussein ◽  
T Z Zhao ◽  
S Dann ◽  
B X Hou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document