scholarly journals Impact of spaceflight and artificial gravity on sulfur metabolism in mouse liver: sulfur metabolomic and transcriptomic analysis

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryo Kurosawa ◽  
Ryota Sugimoto ◽  
Hiroe Imai ◽  
Kohei Atsuji ◽  
Koji Yamada ◽  
...  

AbstractSpaceflight induces hepatic damage, partially owing to oxidative stress caused by the space environment such as microgravity and space radiation. We examined the roles of anti-oxidative sulfur-containing compounds on hepatic damage after spaceflight. We analyzed the livers of mice on board the International Space Station for 30 days. During spaceflight, half of the mice were exposed to artificial earth gravity (1 g) using centrifugation cages. Sulfur-metabolomics of the livers of mice after spaceflight revealed a decrease in sulfur antioxidants (ergothioneine, glutathione, cysteine, taurine, thiamine, etc.) and their intermediates (cysteine sulfonic acid, hercynine, N-acethylserine, serine, etc.) compared to the controls on the ground. Furthermore, RNA-sequencing showed upregulation of gene sets related to oxidative stress and sulfur metabolism, and downregulation of gene sets related to glutathione reducibility in the livers of mice after spaceflight, compared to controls on the ground. These changes were partially mitigated by exposure to 1 g centrifugation. For the first time, we observed a decrease in sulfur antioxidants based on a comprehensive analysis of the livers of mice after spaceflight. Our data suggest that a decrease in sulfur-containing compounds owing to both microgravity and other spaceflight environments (radiation and stressors) contributes to liver damage after spaceflight.

Author(s):  
Marta Kaczor-Kamińska ◽  
Kamil Kamiński ◽  
Krystyna Stalińska ◽  
Maria Wróbel ◽  
Arleta Feldman

Lack of the N-alpha-acetylglucosaminidase gene is responsible for the occurrence of a rare disease – the Sanfilippo syndrome, type B. The result of this gene knock-out is accumulation of glycosaminoglycans (GAGs) – more specifically heparan sulfate – a sulfate rich macromolecule. The sulfur oxidative pathway is involved in the sulfate groups’ turnover in the cells. In contrast, the non-oxidative sulfur pathway leads mostly to formation of sulfane sulfur-containing compounds. The aim of our research was to observe an interaction between MPS IIIB and non-oxidative sulfur metabolism. In this work, we examined selected tissues (livers, kidneys, hearts and spleens) of 3 month old mice with confirmed accumulation of GAGs. The activity and expression of three sulfurtransferases (components of non-oxidative sulfur metabolism): rhodanese, 3-mercaptopyruvate sulfurtransferase and cystathionine γ-lyase was determined, as well as the sulfane sulfur level and the level of other low molecular sulfur-containing compounds (reduced and oxidized glutathione, cysteine and cystine). In all tested tissues, the sulfane sulfur and/or sulfurtransferases’ activities, as well as the cysteine content, underwent statistically significant changes. These correlations were also related to the sex of the tested animals. The obtained results indicated that accumulation of incompletely degraded GAGs in the tissues had affected the non-oxidative sulfur metabolism.


Author(s):  
Aleksandar Bojkovic ◽  
Thomas Dijkmans ◽  
Hang Dao Thi ◽  
Marko Djokic ◽  
Kevin M. Van Geem

2019 ◽  
Vol 17 (2) ◽  
pp. 499-508 ◽  
Author(s):  
Galina S. Pevneva ◽  
Natalya G. Voronetskaya ◽  
Nikita N. Sviridenko ◽  
Anatoly K. Golovko

AbstractThe paper presents the results of investigation of changes in the composition of hydrocarbons and sulfur-containing compounds of an atmospheric residue in the course of cracking in the presence of a tungsten carbide–nickel–chromium (WC/Ni–Cr) catalytic additive and without it. The cracking is carried out in an autoclave at 500 °C for 30 min. The addition of the WC/Ni–Cr additive promotes the deepening of reactions of destruction not only of resins and asphaltenes, but also high molecular weight naphthene-aromatic compounds of the atmospheric residue. It is shown that the content of low molecular weight C9–C17 n-alkanes and C9–C10 alkylbenzenes rose sharply in the products of cracking with addition of WC/Ni–Cr in comparison with those produced without the additive. Alkyl- and naphthene-substituted aromatic hydrocarbons of benzene, naphthalene, phenanthrene series, polyarenes, benzo- and dibenzothiophenes are identified.


2015 ◽  
Vol 197 (23) ◽  
pp. 3626-3628 ◽  
Author(s):  
Larry Reitzer

In this issue of theJournal of Bacteriology, Chonoles Imlay et al. (K. R. Chonoles Imlay, S. Korshunov, and J. A. Imlay, J Bacteriol 197:3629–3644, 2015,http://dx.doi.org/10.1128/JB.00277-15) show that oxidative stress kills sulfur-restrictedEscherichia coligrown with sublethal H2O2when challenged with cystine. Killing requires rapid and seemingly unregulated cystine transport and equally rapid cystine reduction to cysteine. Cysteine export completes an energy-depleting futile cycle. Each reaction of the cycle could be beneficial. Together, a cystine-mediated vulnerability emerges during the transition from a sulfur-restricted to a sulfur-replete environment, perhaps because of complexities of sulfur metabolism.


1980 ◽  
Vol 11 (3) ◽  
pp. 208-210
Author(s):  
E. P. Ovchinnikova ◽  
L. S. Abramova ◽  
Z. A. Rogovin

Author(s):  
Yamato Miyazawa ◽  
Kenji Kawaguchi ◽  
Ryo Katsuta ◽  
Tomoo Nukada ◽  
Ken Ishigami

ABSTRACT DAMASCENOLIDETM [1, 4-(4-methylpent-3-en-1-yl)furan-2(5H)-one], which is isolated from damask rose, is a useful aroma compound with a citrus-like odor. We have previously reported on the synthesis and odor properties of 34 analogs of 1 as part of our new aroma compound development project. In order to develop better aroma compounds and to gather more information on structure-odor relationships, six novel sulfur-containing analogs of 1 were synthesized. Odor evaluation revealed that their odors differed significantly from those of the corresponding sulfur-free compounds. The introduction of a sulfur atom does not necessarily result in a sulfur-like odor. In particular, the 2(5H)-thiophenone analogs gave waxy, oily and lactone-like odors that are uncharacteristic of sulfur-containing compounds. In many synthesized analogs, the introduction of a sulfur atom led to an increase in odor intensity, as expected.


Sign in / Sign up

Export Citation Format

Share Document