scholarly journals Superfluid density, Josephson relation and pairing fluctuations in a multi-component fermion superfluid

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yi-Cai Zhang

AbstractIn this work, a Josephson relation is generalized to a multi-component fermion superfluid. Superfluid density is expressed through a two-particle Green function for pairing states. When the system has only one gapless collective excitation mode, the Josephson relation is simplified, which is given in terms of the superfluid order parameters and the trace of two-particle normal Green function. In addition, it is found that the matrix elements of two-particle Green function is directly related to the matrix elements of the pairing fluctuations of superfluid order parameters. Furthermore, in the presence of inversion symmetry, the superfluid density is given in terms of the pairing fluctuation matrix. The results of the superfluid density in Haldane model show that the generalized Josephson relation can be also applied to a multi-band fermion superfluid in lattice.

2021 ◽  
Author(s):  
Yi-Cai Zhang

Abstract In this work, a Josephson relation is generalized to a multi-component fermion superfluid. Superfluid density is expressed through a two-particle Green function for pairing states. When the system has only one gapless collective excitation mode, the Josephson relation is simplified, which is given in terms of the superfluid order parameters and the trace of two-particle normal Green function. In addition, it is found that the matrix elements of two-particle Green function is directly related to the matrix elements of the pairing fluctuations of superfluid order parameters. Furthermore, in the presence of inversion symmetry, the superfluid density is given in terms of the pairing fluctuation matrix. The results of the superfluid density in Haldane model show that the generalized Josephson relation can be also applied to a multi-band fermion superfluid in lattice.


Author(s):  
Stefan Hollands

AbstractWe introduce a new approach to find the Tomita–Takesaki modular flow for multi-component regions in general chiral conformal field theory. Our method is based on locality and analyticity of primary fields as well as the so-called Kubo–Martin–Schwinger (KMS) condition. These features can be used to transform the problem to a Riemann–Hilbert problem on a covering of the complex plane cut along the regions, which is equivalent to an integral equation for the matrix elements of the modular Hamiltonian. Examples are considered.


Author(s):  
Mariusz Pawlak ◽  
Marcin Stachowiak

AbstractWe present general analytical expressions for the matrix elements of the atom–diatom interaction potential, expanded in terms of Legendre polynomials, in a basis set of products of two spherical harmonics, especially significant to the recently developed adiabatic variational theory for cold molecular collision experiments [J. Chem. Phys. 143, 074114 (2015); J. Phys. Chem. A 121, 2194 (2017)]. We used two approaches in our studies. The first involves the evaluation of the integral containing trigonometric functions with arbitrary powers. The second approach is based on the theorem of addition of spherical harmonics.


1977 ◽  
Vol 32 (8) ◽  
pp. 897-898 ◽  
Author(s):  
Y. K. Chan ◽  
B. S. Rao

Abstract The radial Schrödinger wave equation with Morse potential function is solved for HF molecule. The resulting vibration-rotation eigenfunctions are then used to compute the matrix elements of (r - re)n. These are combined with the experimental values of the electric dipole matrix elements to calculate the dipole moment coefficients, M 1 and M 2.


1983 ◽  
Vol 26 ◽  
Author(s):  
Aaron Barkatt ◽  
William Sousanpour ◽  
Alisa Barkatt ◽  
Morad A. Boroomand ◽  
Pedro B. Macedo

ABSTRACTLeach tests carried out on SRL TDS-131 Defense Waste Class indicate that at high flow rates the controlling mechanism is simple corrosion. The matrix elements (Si, Al) are leached out at rates similar to those of the leaching of the alkalis and of boron, and the leaching process is nearly linear with time. At slow flow rates (below 1 m/yr) leaching becomes controlled by the build-up of a protective layer. Al and most of the Si remain in the leached surface layer. The leach rates decrease in the course of the test before leveling off at constant values which are almost inversely proportional to the contact time, indicating that leachate concentrations have become solubility-limited. The low concentrations observed at this stage indicate the formation of alteration products.


Sign in / Sign up

Export Citation Format

Share Document