scholarly journals Structural optimization of silicon thin film for thermoelectric materials

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takuma Hori

AbstractThe method to optimize nanostructures of silicon thin films as thermoelectric materials is developed. The simulated annealing method is utilized for predicting the optimized structure. The mean free path and thermal conductivity of thin films, which are the objective function of optimization, is evaluated by using phonon transport simulations and lattice dynamics calculations. In small systems composed of square lattices, the simulated annealing method successfully predicts optimized structure corroborated by an exhaustive search. This fact indicates that the simulated annealing method is an effective tool for optimizing nanostructured thin films as thermoelectric materials.

2005 ◽  
Author(s):  
Carlos J. Gomes ◽  
Marcela Madrid ◽  
Javier V. Goicochea ◽  
Cristina H. Amon

The thermal conductivity of silicon thin films is predicted in the directions parallel and perpendicular to the film surfaces (in-plane and out-of-plane, respectively) using equilibrium molecular dynamics, the Green-Kubo relationship and the Stillinger-Weber interatomic potential. Film thicknesses range from 2 to 220 nm and temperatures from 300 to 1000 K. In this range of temperatures, the relation between the phonon mean free path (Λ) and the film thickness (ds) spans from the ballistic regime (≫ ds) to the diffusive, bulk-like regime (≪ ds). We show that equilibrium molecular dynamics and the Green-Kubo relationship can be applied to the study of the thermal conductivity of thin films in the ballistic, transitional and diffusive regimes. When the film is thin enough, the thermal conductivity becomes orthotropic and decreases with decreasing film thickness as a consequence of the scattering of phonons with the film boundaries. The in-plane thermal conductivity follows the trend observed experimentally at 300 K. In the ballistic limit, in accordance with the kinetic theory, the predicted out-of-plane thermal conductivity varies linearly with the film thickness and is temperature-independent for temperatures near or above Debye’s temperature.   This paper was also originally published as part of the Proceedings of the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems.


Author(s):  
Bruce L. Davis ◽  
Mehmet Su ◽  
Ihab El-Kady ◽  
Mahmoud I. Hussein

Thin films composed of dielectric materials are attracting growing interest in the solid state physics and nanoscale heat transfer communities. This is primarily due to their unique thermal and electronic properties and their extensive use as components in optoelectronic, and potentially in thermoelectric, devices. In this paper, an elaborate study is presented on silicon thin films ranging from a few nanometers in thickness to very thick bulk-like thicknesses. Full lattice dynamics calculations are performed incorporating the entire film cross section and the relaxation of the free surfaces. The phonon properties emerging from these calculations are then incorporated into Holland-Callaway models to predict the thermal conductivity and other phonon transport properties. A rigorous curve fitting process to a limited set of available experimental data is carried out to obtain the scattering lifetimes. Our results demonstrate the importance of proper consideration of the full thin-film dispersion description and provide insights into the relationship between thermal conductivity, film thickness and temperature.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Battogtokh Jugdersuren ◽  
Brian T. Kearney ◽  
James C. Culbertson ◽  
Christopher N. Chervin ◽  
Michael B. Katz ◽  
...  

AbstractNanocrystallization has been an important approach for reducing thermal conductivity in thermoelectric materials due to limits on phonon mean-free path imposed by the characteristic structural size. We report on thermal conductivity as low as 0.3 Wm−1K−1 of nanocrystalline silicon thin films prepared by plasma-enhanced chemical-vapor deposition as grain size is reduced to 2.8 nm by controlling hydrogen dilution of silane gas during growth. A multilayered film composed by alternating growth conditions, with layer thicknesses of 3.6 nm, is measured to have a thermal conductivity 30% and 15% lower than its two constituents. Our quantitative analysis attributes the strong reduction of thermal conductivity with decreasing grain size to the magnifying effect of porosity which occurs concomitantly due to increased mass density fluctuations. Our results demonstrate that ultrasmall grain sizes, multilayering, and porosity, all at a similar nanometer-size scale, may be a promising way to engineer thermoelectric materials.


Soft Matter ◽  
2021 ◽  
Author(s):  
Zhiyao Liu ◽  
Zheng Wang ◽  
Yuhua Yin ◽  
Run Jiang ◽  
Baohui Li

Phase behavior of ABC star terpolymers confined between two identical parallel surfaces is systematically studied with a simulated annealing method. Several phase diagrams are constructed for systems with different bulk...


1993 ◽  
Vol 115 (3) ◽  
pp. 312-321 ◽  
Author(s):  
Tien-Sheng Chang ◽  
E. B. Magrab

A methodology to attain the highest fundamental natural frequency of a printed wiring board by rearranging its components has been developed. A general two-dimensional rearrangement algorithm is developed by which the rearrangement of the component-lead-board (CLB) assemblies is performed automatically for any combination of equal size, unequal size, movable and immovable CLBs. This algorithm is also capable of incorporating two design restrictions: fixed (immovable) components and prohibited (non-swappable) areas. A highly computationally efficient objective function for the evaluation of the automatic rearrangement process is introduced, which is a linear function of the size of the individual CLBs that have been selected for each interchange. The simulated annealing method is adapted to solve the combinatorial rearrangement of the CLBs. Using 61 combinations of boundary conditions, equal and unequal sized CLBs, movable and immovable CLBs, various CLB groupings and sets of material properties, it is found that, when compared to the exact solution obtained by an exhaustive search method, the simulated annealing method obtained the highest fundamental natural frequency within 1 percent for 87 percent of the cases considered, within 0.5 percent for 72 percent of the cases and the true maximum in 43 percent of them. To further increase the fundamental natural frequency the introduction of a single interior point support is analyzed. Depending on the boundary conditions an additional increase in the maximum fundamental natural frequency of 44 to 198 percent can be obtained.


Sign in / Sign up

Export Citation Format

Share Document