scholarly journals Retentive capacity of power output and linear versus non-linear mapping of power loss in the isotonic muscular endurance test

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hong-qi Xu ◽  
Yong-tai Xue ◽  
Zi-jian Zhou ◽  
Koon Teck Koh ◽  
Xin Xu ◽  
...  

AbstractThe limit of dynamic endurance during repetitive contractions has been referred to as the point of muscle fatigue, which can be measured by mechanical and electrophysiological parameters combined with subjective estimates of load tolerance for revealing the human real-world capacity required to work continuously. In this study, an isotonic muscular endurance (IME) testing protocol under a psychophysiological fatigue criterion was developed for measuring the retentive capacity of the power output of lower limb muscles. Additionally, to guide the development of electrophysiological evaluation methods, linear and non-linear techniques for creating surface electromyography (sEMG) models were compared in terms of their ability to estimate muscle fatigue. Forty healthy college-aged males performed three trials of an isometric peak torque test and one trial of an IME test for the plantar flexors and knee and hip extensors. Meanwhile, sEMG activity was recorded from the medial gastrocnemius, lateral gastrocnemius, vastus medialis, rectus femoris, vastus lateralis, gluteus maximus, and biceps femoris of the right leg muscles. Linear techniques (amplitude-based parameters, spectral parameters, and instantaneous frequency parameters) and non-linear techniques (a multi-layer perception neural network) were used to predict the time-dependent power output during dynamic contractions. Two mechanical manifestations of muscle fatigue were observed in the IME tests, including power output reduction between the beginning and end of the test and time-dependent progressive power loss. Compared with linear mapping (linear regression) alone or a combination of sEMG variables, non-linear mapping of power loss during dynamic contractions showed significantly higher signal-to-noise ratios and correlation coefficients between the actual and estimated power output. Muscular endurance required in real-world activities can be measured by considering the amount of work produced or the activity duration via the recommended IME testing protocol under a psychophysiological termination criterion. Non-linear mapping techniques provide more powerful mapping of power loss compared with linear mapping in the IME testing protocol.

Applied Nano ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 162-183
Author(s):  
Peter Markoš ◽  
Khandker Muttalib

We reviewed some recent ideas to improve the efficiency and power output of thermoelectric nano-devices. We focused on two essentially independent aspects: (i) increasing the charge current by taking advantage of an interplay between the material and the thermodynamic parameters, which is only available in the non-linear regime; and (ii) decreasing the heat current by using nanowires with surface disorder, which helps excite localized phonons at random positions that can strongly scatter the propagating phonons carrying the thermal current.


Author(s):  
Gregor Selinka ◽  
Raik Stolletz ◽  
Thomas I. Maindl

Many stochastic systems face a time-dependent demand. Especially in stochastic service systems, for example, in call centers, customers may leave the queue if their waiting time exceeds their personal patience. As discussed in the extant literature, it can be useful to use general distributions to model such customer patience. This paper analyzes the time-dependent performance of a multiserver queue with a nonhomogeneous Poisson arrival process with a time-dependent arrival rate, exponentially distributed processing times, and generally distributed time to abandon. Fast and accurate performance approximations are essential for decision support in such queueing systems, but the extant literature lacks appropriate methods for the setting we consider. To approximate time-dependent performance measures for small- and medium-sized systems, we develop a new stationary backlog-carryover (SBC) approach that allows for the analysis of underloaded and overloaded systems. Abandonments are considered in two steps of the algorithm: (i) in the approximation of the utilization as a reduced arrival stream and (ii) in the approximation of waiting-based performance measures with a stationary model for general abandonments. To improve the approximation quality, we discuss an adjustment to the interval lengths. We present a limit result that indicates convergence of the method for stationary parameters. The numerical study compares the approximation quality of different adjustments to the interval length. The new SBC approach is effective for instances with small numbers of time-dependent servers and gamma-distributed abandonment times with different coefficients of variation and for an empirical distribution of the abandonment times from real-world data obtained from a call center. A discrete-event simulation benchmark confirms that the SBC algorithm approximates the performance of the queueing system with abandonments very well for different parameter configurations. Summary of Contribution: The paper presents a fast and accurate numerical method to approximate the performance measures of a time‐dependent queueing system with generally distributed abandonments. The presented stationary backlog carryover approach with abandonment combines algorithmic ideas with stationary queueing models for generally distributed abandonment times. The reliability of the method is analyzed for transient systems and numerically studied with real‐world data.


2009 ◽  
Vol 29 (11) ◽  
pp. 60-66 ◽  
Author(s):  
Jian-gang PENG ◽  
Zhang-fei LI ◽  
Zhi-hua LV ◽  
Hong-wei ZHOU

2018 ◽  
Vol 12 (4) ◽  
pp. 241-259
Author(s):  
Avik Chakraborti ◽  
Nilanjan Datta ◽  
Mridul Nandi

Abstract A block is an n-bit string, and a (possibly keyed) block-function is a non-linear mapping that maps one block to another, e.g., a block-cipher. In this paper, we consider various symmetric key primitives with {\ell} block inputs and raise the following question: what is the minimum number of block-function invocations required for a mode to be secure? We begin with encryption modes that generate {\ell^{\prime}} block outputs and show that at least {(\ell+\ell^{\prime}-1)} block-function invocations are necessary to achieve the PRF security. In presence of a nonce, the requirement of block-functions reduces to {\ell^{\prime}} blocks only. If {\ell=\ell^{\prime}} , in order to achieve SPRP security, the mode requires at least {2\ell} many block-function invocations. We next consider length preserving r-block (called chunk) online encryption modes and show that, to achieve online PRP security, each chunk should have at least {2r-1} many and overall at least {2r\ell-1} many block-functions for {\ell} many chunks. Moreover, we show that it can achieve online SPRP security if each chunk contains at least {2r} non-linear block-functions. We next analyze affine MAC modes and show that an integrity-secure affine MAC mode requires at least {\ell} many block-function invocations to process an {\ell} block message. Finally, we consider affine mode authenticated encryption and show that in order to achieve INT-RUP security or integrity security under a nonce-misuse scenario, either (i) the number of non-linear block-functions required to generate the ciphertext is more than {\ell} or (ii) the number of extra non-linear block-functions required to generate the tag depends on {\ell} .


Sign in / Sign up

Export Citation Format

Share Document