scholarly journals Protein embeddings and deep learning predict binding residues for various ligand classes

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria Littmann ◽  
Michael Heinzinger ◽  
Christian Dallago ◽  
Konstantin Weissenow ◽  
Burkhard Rost

AbstractOne important aspect of protein function is the binding of proteins to ligands, including small molecules, metal ions, and macromolecules such as DNA or RNA. Despite decades of experimental progress many binding sites remain obscure. Here, we proposed bindEmbed21, a method predicting whether a protein residue binds to metal ions, nucleic acids, or small molecules. The Artificial Intelligence (AI)-based method exclusively uses embeddings from the Transformer-based protein Language Model (pLM) ProtT5 as input. Using only single sequences without creating multiple sequence alignments (MSAs), bindEmbed21DL outperformed MSA-based predictions. Combination with homology-based inference increased performance to F1 = 48 ± 3% (95% CI) and MCC = 0.46 ± 0.04 when merging all three ligand classes into one. All results were confirmed by three independent data sets. Focusing on very reliably predicted residues could complement experimental evidence: For the 25% most strongly predicted binding residues, at least 73% were correctly predicted even when ignoring the problem of missing experimental annotations. The new method bindEmbed21 is fast, simple, and broadly applicable—neither using structure nor MSAs. Thereby, it found binding residues in over 42% of all human proteins not otherwise implied in binding and predicted about 6% of all residues as binding to metal ions, nucleic acids, or small molecules.

2021 ◽  
Author(s):  
Maria Littmann ◽  
Michael Heinzinger ◽  
Christian Dallago ◽  
Konstantin Weissenow ◽  
Burkhard Rost

AbstractOne important aspect of protein function is the binding of proteins to ligands, including small molecules, metal ions, and macromolecules such as DNA or RNA. Despite decades of experimental progress many binding sites remain obscure. Here, we proposed bindEmbed21, a method predicting whether a protein residue binds to metal ions, nucleic acids, or small molecules. The Artificial Intelligence (AI)-based method exclusively uses embeddings from the Transformer-based protein Language Model (pLM) ProtT5 as input. Using only single sequences without creating multiple sequence alignments (MSAs), bindEmbed21DL outperformed existing MSA-based methods. Combination with homology-based inference increased performance to F1=48±3% (95% CI) and MCC=0.46±0.04 when merging all three ligand classes into one. All results were confirmed by three independent data sets. Focusing on very reliably predicted residues could complement experimental evidence: For the 25% most strongly predicted binding residues, at least 73% were correctly predicted even when ignoring the problem of missing experimental annotations. The new method bindEmbed21 is fast, simple, and broadly applicable - neither using structure nor MSAs. Thereby, it found binding residues in over 42% of all human proteins not otherwise implied in binding and predicted about 6% of all residues as binding to metal ions, nucleic acids, or small molecules.


2021 ◽  
Author(s):  
Céline Marquet ◽  
Michael Heinzinger ◽  
Tobias Olenyi ◽  
Christian Dallago ◽  
Kyra Erckert ◽  
...  

AbstractThe emergence of SARS-CoV-2 variants stressed the demand for tools allowing to interpret the effect of single amino acid variants (SAVs) on protein function. While Deep Mutational Scanning (DMS) sets continue to expand our understanding of the mutational landscape of single proteins, the results continue to challenge analyses. Protein Language Models (pLMs) use the latest deep learning (DL) algorithms to leverage growing databases of protein sequences. These methods learn to predict missing or masked amino acids from the context of entire sequence regions. Here, we used pLM representations (embeddings) to predict sequence conservation and SAV effects without multiple sequence alignments (MSAs). Embeddings alone predicted residue conservation almost as accurately from single sequences as ConSeq using MSAs (two-state Matthews Correlation Coefficient—MCC—for ProtT5 embeddings of 0.596 ± 0.006 vs. 0.608 ± 0.006 for ConSeq). Inputting the conservation prediction along with BLOSUM62 substitution scores and pLM mask reconstruction probabilities into a simplistic logistic regression (LR) ensemble for Variant Effect Score Prediction without Alignments (VESPA) predicted SAV effect magnitude without any optimization on DMS data. Comparing predictions for a standard set of 39 DMS experiments to other methods (incl. ESM-1v, DeepSequence, and GEMME) revealed our approach as competitive with the state-of-the-art (SOTA) methods using MSA input. No method outperformed all others, neither consistently nor statistically significantly, independently of the performance measure applied (Spearman and Pearson correlation). Finally, we investigated binary effect predictions on DMS experiments for four human proteins. Overall, embedding-based methods have become competitive with methods relying on MSAs for SAV effect prediction at a fraction of the costs in computing/energy. Our method predicted SAV effects for the entire human proteome (~ 20 k proteins) within 40 min on one Nvidia Quadro RTX 8000. All methods and data sets are freely available for local and online execution through bioembeddings.com, https://github.com/Rostlab/VESPA, and PredictProtein.


2021 ◽  
Author(s):  
Céline Marquet ◽  
Michael Heinzinger ◽  
Tobias Olenyi ◽  
Christian Dallago ◽  
Michael Bernhofer ◽  
...  

Abstract The emergence of SARS-CoV-2 variants stressed the demand for tools allowing to interpret the effect of single amino acid variants (SAVs) on protein function. While Deep Mutational Scanning (DMS) sets continue to expand our understanding of the mutational landscape of single proteins, the results continue to challenge analyses. Protein Language Models (pLMs) use the latest deep learning (DL) algorithms to leverage growing databases of protein sequences. These methods learn to predict missing or masked amino acids from the context of entire sequence regions. Here, we used pLM representations (embeddings) to predict sequence conservation and SAV effects without multiple sequence alignments (MSAs). Embeddings alone predicted residue conservation almost as accurately from single sequences as ConSeq using MSAs (two-state Matthews Correlation Coefficient – MCC - for ProtT5 embeddings of 0.596±0.006 vs. 0.608±0.006 for ConSeq). Inputting the conservation prediction along with BLOSUM62 substitution scores and pLM mask reconstruction probabilities into a simplistic logistic regression (LR) ensemble for Variant Effect Score Prediction without Alignments (VESPA) predicted SAV effect magnitude without any optimization on DMS data. Comparing predictions for a standard set of 39 DMS experiments to other methods (incl. ESM-1v, DeepSequence, and GEMME) revealed our approach as competitive with the state-of-the-art (SOTA) methods using MSA input. No method outperformed all others, neither consistently nor statistically significantly, independently of the performance measure applied (Spearman and Pearson correlation). Lastly, we investigated binary effect predictions on DMS experiments for four human proteins. Overall, embedding-based methods have become competitive with methods relying on MSAs for SAV effect prediction at a fraction of the costs in computing/energy. Our method predicted SAV effects for the entire human proteome (~20k proteins) within 40 minutes on one Nvidia Quadro RTX 8000. All methods and data sets are freely available for local and online execution through bioembeddings.com, https://github.com/Rostlab/VESPA, and PredictProtein.


2021 ◽  
Author(s):  
Céline Marquet ◽  
Michael Heinzinger ◽  
Tobias Olenyi ◽  
Christian Dallago ◽  
Michael Bernhofer ◽  
...  

Abstract The emergence of SARS-CoV-2 variants stressed the demand for tools allowing to interpret the effect of single amino acid variants (SAVs) on protein function. While Deep Mutational Scanning (DMS) sets continue to expand our understanding of the mutational landscape of single proteins, the results continue to challenge analyses. Protein Language Models (pLMs) use the latest deep learning (DL) algorithms to leverage growing databases of protein sequences. These methods learn to predict missing or masked amino acids from the context of entire sequence regions. Here, we used pLM representations (embeddings) to predict sequence conservation and SAV effects without multiple sequence alignments (MSAs). Embeddings alone predicted residue conservation almost as accurately from single sequences as ConSeq using MSAs (two-state Matthew Correlation Coefficient – MCC - for ProtT5 embeddings of 0.596 ± 0.006 vs. 0.608 ± 0.006 for ConSeq). Inputting the conservation prediction along with BLOSUM62 substitution scores and pLM mask reconstruction probabilities into a simplistic logistic regression (LR) ensemble for Variant Effect Scoring without alignments (VESPA) predicted SAV effect magnitude without any optimization on DMS data. Comparing predictions for a standard set of 39 DMS experiments to other methods (incl. ESM-1v, DeepSequence, and GEMME) revealed our approach as competitive with the state-of-the-art (SOTA) methods using MSA input. No method outperformed all others, neither consistently nor in a statistically significant manner, independently of the performance measure applied (incl. two-state accuracy: Q2, MCC, Spearman and Pearson correlation). Lastly, we investigated binary effect predictions on DMS experiments for four human proteins. Overall, embedding-based methods have become competitive with methods relying on MSAs for SAV effect prediction at a fraction of the costs in computing/energy. Our method predicted SAV effects for the entire human proteome (~ 20k proteins) within 40 minutes on one Nvidia Quadro RTX 8000. All methods and data sets are freely available for local and online execution through bioembeddings.com, https://github.com/Rostlab/VESPA, and PredictProtein.


2021 ◽  
Author(s):  
Céline Marquet ◽  
Michael Heinzinger ◽  
Tobias Olenyi ◽  
Christian Dallago ◽  
Michael Bernhofer ◽  
...  

Abstract The emergence of SARS-CoV-2 variants stressed the demand for tools allowing to interpret the effect of single amino acid variants (SAVs) on protein function. While Deep Mutational Scanning (DMS) sets continue to expand our understanding of the mutational landscape of single proteins, the results continue to challenge analyses. Protein Language Models (LMs) use the latest deep learning (DL) algorithms to leverage growing databases of protein sequences. These methods learn to predict missing or marked amino acids from the context of entire sequence regions. Here, we explored how to benefit from learned protein LM representations (embeddings) to predict SAV effects. Although we have failed so far to predict SAV effects directly from embeddings, this input alone predicted residue conservation almost as accurately from single sequences as using multiple sequence alignments (MSAs) with a two-state per-residue accuracy (conserved/not) of Q2=80% (embeddings) vs. 81% (ConSeq). Considering all SAVs at all residue positions predicted as conserved to affect function reached 68.6% (Q2: effect/neutral; for PMD) without optimization, compared to an expert solution such as SNAP2 (Q2=69.8). Combining predicted conservation with BLOSUM62 to obtain variant-specific binary predictions, DMS experiments of four human proteins were predicted better than by SNAP2, and better than by applying the same simplistic approach to conservation taken from ConSeq. Thus, embedding methods have become competitive with methods relying on MSAs for SAV effect prediction at a fraction of the costs in computing/energy. This allowed prediction of SAV effects for the entire human proteome (~20k proteins) within 17 minutes on a single GPU.


2018 ◽  
Author(s):  
Michael Nute ◽  
Ehsan Saleh ◽  
Tandy Warnow

AbstractThe estimation of multiple sequence alignments of protein sequences is a basic step in many bioinformatics pipelines, including protein structure prediction, protein family identification, and phylogeny estimation. Statistical co-estimation of alignments and trees under stochastic models of sequence evolution has long been considered the most rigorous technique for estimating alignments and trees, but little is known about the accuracy of such methods on biological benchmarks. We report the results of an extensive study evaluating the most popular protein alignment methods as well as the statistical co-estimation method BAli-Phy on 1192 protein data sets from established benchmarks as well as on 120 simulated data sets. Our study (which used more than 230 CPU years for the BAli-Phy analyses alone) shows that BAli-Phy is dramatically more accurate than the other alignment methods on the simulated data sets, but is among the least accurate on the biological benchmarks. There are several potential causes for this discordance, including model misspecification, errors in the reference alignments, and conflicts between structural alignment and evolutionary alignments; future research is needed to understand the most likely explanation for our observations. multiple sequence alignment, BAli-Phy, protein sequences, structural alignment, homology


2020 ◽  
Vol 4 (2) ◽  
pp. 369-385 ◽  
Author(s):  
Ying Chen ◽  
Yue Cao ◽  
Cheng Ma ◽  
Jun-Jie Zhu

This review summarizes the recent development of ECL sensors based on carbon-based dots. Particularly, various analytical approaches involving metal ions, small molecules, proteins, nucleic acids and cells are thoroughly presented.


2021 ◽  
Author(s):  
Ziwei Xie ◽  
Jinbo Xu

Motivation: Inter-protein (interfacial) contact prediction is very useful for in silico structural characterization of protein-protein interactions. Although deep learning has been applied to this problem, its accuracy is not as good as intra-protein contact prediction. Results: We propose a new deep learning method GLINTER (Graph Learning of INTER-protein contacts) for interfacial contact prediction of dimers, leveraging a rotational invariant representation of protein tertiary structures and a pretrained language model of multiple sequence alignments (MSAs). Tested on the 13th and 14th CASP-CAPRI datasets, the average top L/10 precision achieved by GLINTER is 54.35% on the homodimers and 51.56% on all the dimers, much higher than 30.43% obtained by the latest deep learning method DeepHomo on the homodimers and 14.69% obtained by BIPSPI on all the dimers. Our experiments show that GLINTER-predicted contacts help improve selection of docking decoys.


2021 ◽  
Author(s):  
Konstantin Weissenow ◽  
Michael Heinzinger ◽  
Burkhard Rost

All state-of-the-art (SOTA) protein structure predictions rely on evolutionary information captured in multiple sequence alignments (MSAs), primarily on evolutionary couplings (co-evolution). Such information is not available for all proteins and is computationally expensive to generate. Prediction models based on Artificial Intelligence (AI) using only single sequences as input are easier and cheaper but perform so poorly that speed becomes irrelevant. Here, we described the first competitive AI solution exclusively inputting embeddings extracted from pre-trained protein Language Models (pLMs), namely from the transformer pLM ProtT5, from single sequences into a relatively shallow (few free parameters) convolutional neural network (CNN) trained on inter-residue distances, i.e. protein structure in 2D. The major advance originated from processing the attention heads learned by ProtT5. Although these models required at no point any MSA, they matched the performance of methods relying on co-evolution. Although not reaching the very top, our lean approach came close at substantially lower costs thereby speeding up development and each future prediction. By generating protein-specific rather than family-averaged predictions, these new solutions could distinguish between structural features differentiating members of the same family of proteins with similar structure predicted alike by all other top methods.


2021 ◽  
Author(s):  
Héléna Alexandra Gaspar ◽  
Mohamed Ahmed ◽  
Thomas Edlich ◽  
Benedek Fabian ◽  
Zsolt Varszegi ◽  
...  

<div>Proteochemometric (PCM) models of protein-ligand activity combine information from both the ligands and the proteins to which they bind. Several methods inspired by the field of natural language processing (NLP) have been proposed to represent protein sequences. </div><div>Here, we present PCM benchmark results on three multi-protein datasets: protein kinases, rhodopsin-like GPCRs (ChEMBL binding and functional assays), and cytochrome P450 enzymes. Keeping ligand descriptors fixed, we evaluate our own protein embeddings based on subword-segmented language models trained on mammalian sequences against pre-existing NLP-based descriptors, protein-protein similarity matrices derived from multiple sequence alignments (MSA), dummy protein one-hot encodings, and a combination of NLP-based and MSA-based descriptors. Our results show that performance gains over one-hot encodings are small and combining NLP-based and MSA-based descriptors increases predictive performance consistently across different splitting strategies. This work has been presented at the 3rd RSC-BMCS / RSC-CICAG Artificial Intelligence in Chemistry in September 2020.</div>


Sign in / Sign up

Export Citation Format

Share Document