scholarly journals Using dynamic time warping self-organizing maps to characterize diurnal patterns in environmental exposures

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kenan Li ◽  
Katherine Sward ◽  
Huiyu Deng ◽  
John Morrison ◽  
Rima Habre ◽  
...  

AbstractAdvances in measurement technology are producing increasingly time-resolved environmental exposure data. We aim to gain new insights into exposures and their potential health impacts by moving beyond simple summary statistics (e.g., means, maxima) to characterize more detailed features of high-frequency time series data. This study proposes a novel variant of the Self-Organizing Map (SOM) algorithm called Dynamic Time Warping Self-Organizing Map (DTW-SOM) for unsupervised pattern discovery in time series. This algorithm uses DTW, a similarity measure that optimally aligns interior patterns of sequential data, both as the similarity measure and training guide of the neural network. We applied DTW-SOM to a panel study monitoring indoor and outdoor residential temperature and particulate matter air pollution (PM2.5) for 10 patients with asthma from 7 households near Salt Lake City, UT; the patients were followed for up to 373 days each. Compared to previous SOM algorithms using timestamp alignment on time series data, the DTW-SOM algorithm produced fewer quantization errors and more detailed diurnal patterns. DTW-SOM identified the expected typical diurnal patterns in outdoor temperature which varied by season, as well diurnal patterns in PM2.5 which may be related to daily asthma outcomes. In summary, DTW-SOM is an innovative feature engineering method that can be applied to highly time-resolved environmental exposures assessed by sensors to identify typical diurnal (or hourly or monthly) patterns and provide new insights into the health effects of environmental exposures.

2020 ◽  
Author(s):  
Kenan Li ◽  
Katherine Sward ◽  
Huiyu Deng ◽  
John Morrison ◽  
Rima Habre ◽  
...  

Abstract BackgroundAdvances in measurement technology are producing increasingly time-resolved environmental exposure data. We aim to gain new insights into exposures and their potential health impacts by moving beyond simple summary statistics (e.g., means, maximums) to characterize more detailed features of high-frequency time-series data. MethodsThis study proposes a novel variant of the Self-Organizing Map (SOM) algorithm called Dynamic Time Warping Self-Organizing Map (DTW-SOM) for unsupervised pattern discovery in time series. This algorithm uses DTW, a similarity measure for sequential data that optimally aligns interior patterns, both as the similarity measure and for training the neural network.ResultsWe applied DTW-SOM to a panel study monitoring indoor and outdoor residential environmental exposures for 10 patients with asthma from 7 households near Salt Lake City, Utah; each patient was followed for up to 373 days. Compared to other SOM algorithms using Euclidean distance, the DTW-SOM algorithm maintained the topological properties of the input time series and generated more detailed diurnal patterns. We observed seasonal patterns in outdoor temperature and distinct patterns of indoor peak PM2.5 exposure, which was likely linked to both combustion sources and days with increased inhaler usage. ConclusionsThe new algorithm, DTW-SOM, better preserved the topology relationship of time-series data and better summarized time-series patterns as compared to the original version of SOM.


Author(s):  
Gen Niina ◽  
◽  
Hiroshi Dozono ◽  
Kazuhiro Muramatsu

The rapid progress in and the expanding complexity of information and technology systems have made data analysis increasingly relevant. Data having a variety of elements are complex, and making very difficult to evaluate a state of a model from observed data generated probabilistically by the model. To evaluate these hidden states, we propose Spherical-Self Organizing Map (S-SOM) with a Hidden Markov Model (HMM) that infers such hidden states.


2020 ◽  
Author(s):  
Hsiao-Ko Chang ◽  
Hui-Chih Wang ◽  
Chih-Fen Huang ◽  
Feipei Lai

BACKGROUND In most of Taiwan’s medical institutions, congestion is a serious problem for emergency departments. Due to a lack of beds, patients spend more time in emergency retention zones, which make it difficult to detect cardiac arrest (CA). OBJECTIVE We seek to develop a pharmaceutical early warning model to predict cardiac arrest in emergency departments via drug classification and medical expert suggestion. METHODS We propose a new early warning score model for detecting cardiac arrest via pharmaceutical classification and by using a sliding window; we apply learning-based algorithms to time-series data for a Pharmaceutical Early Warning Scoring Model (PEWSM). By treating pharmaceutical features as a dynamic time-series factor for cardiopulmonary resuscitation (CPR) patients, we increase sensitivity, reduce false alarm rates and mortality, and increase the model’s accuracy. To evaluate the proposed model we use the area under the receiver operating characteristic curve (AUROC). RESULTS Four important findings are as follows: (1) We identify the most important drug predictors: bits, and replenishers and regulators of water and electrolytes. The best AUROC of bits is 85%; that of replenishers and regulators of water and electrolytes is 86%. These two features are the most influential of the drug features in the task. (2) We verify feature selection, in which accounting for drugs improve the accuracy: In Task 1, the best AUROC of vital signs is 77%, and that of all features is 86%. In Task 2, the best AUROC of all features is 85%, which demonstrates that thus accounting for the drugs significantly affects prediction. (3) We use a better model: For traditional machine learning, this study adds a new AI technology: the long short-term memory (LSTM) model with the best time-series accuracy, comparable to the traditional random forest (RF) model; the two AUROC measures are 85%. (4) We determine whether the event can be predicted beforehand: The best classifier is still an RF model, in which the observational starting time is 4 hours before the CPR event. Although the accuracy is impaired, the predictive accuracy still reaches 70%. Therefore, we believe that CPR events can be predicted four hours before the event. CONCLUSIONS This paper uses a sliding window to account for dynamic time-series data consisting of the patient’s vital signs and drug injections. In a comparison with NEWS, we improve predictive accuracy via feature selection, which includes drugs as features. In addition, LSTM yields better performance with time-series data. The proposed PEWSM, which offers 4-hour predictions, is better than the National Early Warning Score (NEWS) in the literature. This also confirms that the doctor’s heuristic rules are consistent with the results found by machine learning algorithms.


2020 ◽  
Author(s):  
Hsiao-Ko Chang ◽  
Hui-Chih Wang ◽  
Chih-Fen Huang ◽  
Feipei Lai

BACKGROUND In most of Taiwan’s medical institutions, congestion is a serious problem for emergency departments. Due to a lack of beds, patients spend more time in emergency retention zones, which make it difficult to detect cardiac arrest (CA). OBJECTIVE We seek to develop a Drug Early Warning System Model (DEWSM), it included drug injections and vital signs as this research important features. We use it to predict cardiac arrest in emergency departments via drug classification and medical expert suggestion. METHODS We propose this new model for detecting cardiac arrest via drug classification and by using a sliding window; we apply learning-based algorithms to time-series data for a DEWSM. By treating drug features as a dynamic time-series factor for cardiopulmonary resuscitation (CPR) patients, we increase sensitivity, reduce false alarm rates and mortality, and increase the model’s accuracy. To evaluate the proposed model, we use the area under the receiver operating characteristic curve (AUROC). RESULTS Four important findings are as follows: (1) We identify the most important drug predictors: bits (intravenous therapy), and replenishers and regulators of water and electrolytes (fluid and electrolyte supplement). The best AUROC of bits is 85%, it means the medical expert suggest the drug features: bits, it will affect the vital signs, and then the evaluate this model correctly classified patients with CPR reach 85%; that of replenishers and regulators of water and electrolytes is 86%. These two features are the most influential of the drug features in the task. (2) We verify feature selection, in which accounting for drugs improve the accuracy: In Task 1, the best AUROC of vital signs is 77%, and that of all features is 86%. In Task 2, the best AUROC of all features is 85%, which demonstrates that thus accounting for the drugs significantly affects prediction. (3) We use a better model: For traditional machine learning, this study adds a new AI technology: the long short-term memory (LSTM) model with the best time-series accuracy, comparable to the traditional random forest (RF) model; the two AUROC measures are 85%. It can be seen that the use of new AI technology will achieve better results, currently comparable to the accuracy of traditional common RF, and the LSTM model can be adjusted in the future to obtain better results. (4) We determine whether the event can be predicted beforehand: The best classifier is still an RF model, in which the observational starting time is 4 hours before the CPR event. Although the accuracy is impaired, the predictive accuracy still reaches 70%. Therefore, we believe that CPR events can be predicted four hours before the event. CONCLUSIONS This paper uses a sliding window to account for dynamic time-series data consisting of the patient’s vital signs and drug injections. The National Early Warning Score (NEWS) only focuses on the score of vital signs, and does not include factors related to drug injections. In this study, the experimental results of adding the drug injections are better than only vital signs. In a comparison with NEWS, we improve predictive accuracy via feature selection, which includes drugs as features. In addition, we use traditional machine learning methods and deep learning (using LSTM method as the main processing time series data) as the basis for comparison of this research. The proposed DEWSM, which offers 4-hour predictions, is better than the NEWS in the literature. This also confirms that the doctor’s heuristic rules are consistent with the results found by machine learning algorithms.


Author(s):  
Birgit Lessmann ◽  
Tim W Nattkemper ◽  
Johannes Huth ◽  
Christian Loyek ◽  
Preminda Kessar ◽  
...  

PLoS ONE ◽  
2018 ◽  
Vol 13 (5) ◽  
pp. e0197499 ◽  
Author(s):  
Yongli Liu ◽  
Jingli Chen ◽  
Shuai Wu ◽  
Zhizhong Liu ◽  
Hao Chao

Sign in / Sign up

Export Citation Format

Share Document