scholarly journals Human IgE does not bind to human FcRn

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Maximilian Brinkhaus ◽  
Elvera J. van der Kooi ◽  
Arthur E. H. Bentlage ◽  
Pleuni Ooijevaar-de Heer ◽  
Ninotska I. L. Derksen ◽  
...  

AbstractThe neonatal Fc receptor (FcRn) is known to mediate placental transfer of IgG from mother to unborn. IgE is widely known for triggering immune responses to environmental antigens. Recent evidence suggests FcRn-mediated transplacental passage of IgE during pregnancy. However, direct interaction of FcRn and IgE was not investigated. Here, we compared binding of human IgE and IgG variants to recombinant soluble human FcRn with β2-microglobulin (sFcRn) in surface plasmon resonance (SPR) at pH 7.4 and pH 6.0. No interaction was found between human IgE and human sFcRn. These results imply that FcRn can only transport IgE indirectly, and thereby possibly transfer allergenic sensitivity from mother to fetus.

2019 ◽  
Vol 93 (15) ◽  
Author(s):  
Tina M. Cairns ◽  
Noah T. Ditto ◽  
Doina Atanasiu ◽  
Huan Lou ◽  
Benjamin D. Brooks ◽  
...  

ABSTRACTHerpes simplex virus (HSV) requires fusion between the viral envelope and host membrane. Four glycoproteins, gD, gH/gL, and gB, are essential for this process. To initiate fusion, gD binds its receptor and undergoes a conformational change that hypothetically leads to activation of gH/gL, which in turn triggers the fusion protein gB to undergo rearrangements leading to membrane fusion. Our model predicts that gD must interact with both its receptor and gH/gL to promote fusion. In support of this, we have shown that gD is structurally divided into two “faces”: one for the binding receptor and the other for its presumed interaction with gH/gL. However, until now, we have been unable to demonstrate a direct interaction between gD and gH/gL. Here, we used surface plasmon resonance to show that the ectodomain of gH/gL binds directly to the ectodomain of gD when (i) gD is captured by certain anti-gD monoclonal antibodies (MAbs) that are bound to a biosensor chip, (ii) gD is bound to either one of its receptors on a chip, and (iii) gD is covalently bound to the chip surface. To localize the gH/gL binding site on gD, we used multiple anti-gD MAbs from six antigenic communities and determined which ones interfered with this interaction. MAbs from three separate communities block gD-gH/gL binding, and their epitopes encircle a geographical area on gD that we propose comprises the gH/gL binding domain. Together, our results show that gH/gL interacts directly with gD, supporting a role for this step in HSV entry.IMPORTANCEHSV entry is a multistep process that requires the actions of four glycoproteins, gD, gH/gL, and gB. Our current model predicts that gD must interact with both its receptor and gH/gL to promote viral entry. Although we know a great deal about how gD binds its receptors, until now we have been unable to demonstrate a direct interaction between gD and gH/gL. Here, we used a highly sensitive surface plasmon resonance technique to clearly demonstrate that gD and gH/gL interact. Furthermore, using multiple MAbs with defined epitopes, we have delineated a domain on gD that is independent of that used for receptor binding and which likely represents the gH/gL interaction domain. Targeting this interaction to prevent fusion may enhance both therapeutic and vaccine strategies.


2020 ◽  
pp. 44-49
Author(s):  
I. N. Pavlov

Two optical methods, namely surface plasmon resonance imaging and frustrated total internal reflection, are described in the paper in terms of comparing their sensitivity to change of refractive index of a thin boundary layer of an investigated medium. It is shown that, despite the fact that the theoretically calculated sensitivity is higher for the frustrated total internal reflection method, and the fact that usually in practice the surface plasmon resonance method, on the contrary, is considered more sensitive, under the same experimental conditions both methods show a similar result.


2010 ◽  
Vol 130 (7) ◽  
pp. 269-274 ◽  
Author(s):  
Takeshi Onodera ◽  
Takuzo Shimizu ◽  
Norio Miura ◽  
Kiyoshi Matsumoto ◽  
Kiyoshi Toko

PIERS Online ◽  
2008 ◽  
Vol 4 (7) ◽  
pp. 746-750 ◽  
Author(s):  
Bing-Hung Chen ◽  
Yih-Chau Wang ◽  
Jia-Hng Lin

Sign in / Sign up

Export Citation Format

Share Document