Characterisation of mucosal and systemic immune responses in rainbow trout (Oncorhynchus mykiss) using surface plasmon resonance

2000 ◽  
Vol 10 (8) ◽  
pp. 651-666 ◽  
Author(s):  
Kenneth D Cain ◽  
Darren R Jones ◽  
Robert L Raison
2000 ◽  
Vol 78 (12) ◽  
pp. 1086-1096 ◽  
Author(s):  
P Prunet ◽  
O Sandra ◽  
P Le Rouzic ◽  
O Marchand ◽  
V Laudet

We present recent information on the molecular characterization of the prolactin receptor (PRL-R) in two teleost species, tilapia (Oreochromis niloticus) and rainbow trout (Oncorhynchus mykiss), in the perspective of improved understanding of the physiological differences in the control of osmoregulatory function between these two fish species. Although our interest will mainly focus on osmoregulatory organs, we will also discuss evidence of the presence of PRL-R in other tissues such as gonads and hematopoietic organs. The first fish PRL-R was characterized in tilapia. This receptor is similar to that of the long form of mammalian PRL-R, but the most conserved region (extracellular domain) has only 53% identity with mammalian PRL-R. A rainbow trout PRL-R cDNA has been also isolated and appeared very similar in structure to tilapia PRL-R. Expression of the PRL-R gene was studied by Northern blotting for various tissues from tilapia and trout, and a unique transcript size of 3.2-3.4 kb was observed in all tissues studied (including male and female gonads, skin, brain, spleen, head, kidney, and circulating lymphocytes). Osmoregulatory organs (gills, kidney, intestine) were the richest tissues. Using in situ hybridization, PRL-R transcripts were localized in gill chloride cells, both in trout and tilapia. Analysis of PRL-R transcript levels in gills, kidney, and intestine indicated the maintenance of a high level of expression during adaptation to a hyperosmotic environment. These results support PRL being a pleiotropic hormone in fish and suggest the presence of a unique PRL-R form in tilapia and in trout. Finally, characterization of hormone receptor binding has been carried out in both species using a radioreceptor assay (in tilapia) or surface plasmon resonance (SPR) technology (in trout). These studies indicated the presence of a stable hormone-receptor complex in tilapia, while PRL binds to its receptor through an unstable homodimeric complex in trout. Thus, the characteristics of PRL binding on its receptor appear to be significantly different in tilapia and trout. Whether such differences may lead to different signal transduction mechanisms and osmoregulatory actions of PRL in these two euryhaline species merits further investigation.Key words: prolactin receptor, genetic expression, hormone-receptor interaction, surface plasmon resonance, fish osmoregulation.


Sign in / Sign up

Export Citation Format

Share Document