scholarly journals Author Correction: Contribution of conspecific negative density dependence to species diversity is increasing towards low environmental limitation in Japanese forests

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pavel Fibich ◽  
Masae I. Ishihara ◽  
Satoshi N. Suzuki ◽  
Jiří Doležal ◽  
Jan Altman
Science ◽  
2017 ◽  
Vol 356 (6345) ◽  
pp. 1389-1392 ◽  
Author(s):  
Joseph A. LaManna ◽  
Scott A. Mangan ◽  
Alfonso Alonso ◽  
Norman A. Bourg ◽  
Warren Y. Brockelman ◽  
...  

Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in conspecific negative density dependence (CNDD). By using more than 3000 species and nearly 2.4 million trees across 24 forest plots worldwide, we show that global patterns in tree species diversity reflect not only stronger CNDD at tropical versus temperate latitudes but also a latitudinal shift in the relationship between CNDD and species abundance. CNDD was stronger for rare species at tropical versus temperate latitudes, potentially causing the persistence of greater numbers of rare species in the tropics. Our study reveals fundamental differences in the nature of local-scale biotic interactions that contribute to the maintenance of species diversity across temperate and tropical communities.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pavel Fibich ◽  
Masae I. Ishihara ◽  
Satoshi N. Suzuki ◽  
Jiří Doležal ◽  
Jan Altman

AbstractSpecies coexistence is a result of biotic interactions, environmental and historical conditions. The Janzen-Connell hypothesis assumes that conspecific negative density dependence (CNDD) is one of the local processes maintaining high species diversity by decreasing population growth rates at high densities. However, the contribution of CNDD to species richness variation across environmental gradients remains unclear. In 32 large forest plots all over the Japanese archipelago covering > 40,000 individual trees of > 300 species and based on size distributions, we analysed the strength of CNDD of individual species and its contribution to species number and diversity across altitude, mean annual temperature, mean annual precipitation and maximum snow depth gradients. The strength of CNDD was increasing towards low altitudes and high tree species number and diversity. The effect of CNDD on species number was changing across altitude, temperature and snow depth gradients and their combined effects contributed 11–18% of the overall explained variance. Our results suggest that CNDD can work as a mechanism structuring forest communities in the Japanese archipelago. Strong CNDD was observed to be connected with high species diversity under low environmental limitations where local biotic interactions are expected to be stronger than in niche-based community assemblies under high environmental filtering.


Ecosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joseph A. LaManna ◽  
Scott A. Mangan ◽  
Jonathan A. Myers

2020 ◽  
Author(s):  
Joseph A. LaManna ◽  
Scott A. Mangan ◽  
Jonathan A. Myers

AbstractRecent studies showing bias in the measurement of density dependence have the potential to sow confusion in the field of ecology. We provide clarity by elucidating key conceptual and statistical errors with the null-model approach used in Detto et al. (2019). We show that neither their null model nor a more biologically-appropriate null model reproduces differences in density-dependent recruitment between forests, indicating that the latitudinal gradient in negative density dependence is not an artefact of statistical bias. Finally, we suggest a path forward that combines observational comparisons of density dependence in multiple fitness components across localities with mechanistic and geographically-replicated experiments.


2021 ◽  
Author(s):  
Kathryn E. Barry ◽  
Stefan A. Schnitzer

AbstractOne of the central goals of ecology is to determine the mechanisms that enable coexistence among species. Evidence is accruing that conspecific negative density dependence (CNDD), the process by which plant seedlings are unable to survive in the area surrounding adults of their same species, is a major contributor to tree species coexistence. However, for CNDD to maintain diversity, three conditions must be met. First, CNDD must maintain diversity for the majority of the woody plant community (rather than merely specific groups). Second, the pattern of repelled recruitment must increase in with plant size. Third, CNDD must occurs across life history strategies and not be restricted to a single life history strategy. These three conditions are rarely tested simultaneously. In this study, we simultaneously test all three conditions in a woody plant community in a North American temperate forest. We examined whether the different woody plant growth forms (shrubs, understory trees, mid-story trees, canopy trees, and lianas) at different ontogenetic stages (seedling, sapling, and adult) were overdispersed – a spatial pattern indicative of CNDD – using spatial point pattern analysis across life history stages and strategies. We found that there was a strong signal of overdispersal at the community level. However, this pattern was driven by adult canopy trees. By contrast, understory plants, which can constitute up to 80% of temperate forest plant diversity, were not overdispersed as adults. The lack of overdispersal suggests that CNDD is unlikely to be a major mechanism maintaining understory plant diversity. The focus on trees for the vast majority of CNDD studies may have biased the perception of the prevalence of CNDD as a dominant mechanism that maintains community-level diversity when, according to our data, CNDD may be restricted largely to trees.


2010 ◽  
Vol 98 (1) ◽  
pp. 137-146 ◽  
Author(s):  
Mailyn A. Gonzalez ◽  
Aurélien Roger ◽  
Elodie A. Courtois ◽  
Franck Jabot ◽  
Natalia Norden ◽  
...  

Oikos ◽  
2020 ◽  
Vol 129 (7) ◽  
pp. 1072-1083 ◽  
Author(s):  
Felix May ◽  
Thorsten Wiegand ◽  
Andreas Huth ◽  
Jonathan M. Chase

Sign in / Sign up

Export Citation Format

Share Document