scholarly journals Evidence for a spin acoustic surface plasmon from inelastic atom scattering

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
G. Benedek ◽  
M. Bernasconi ◽  
D. Campi ◽  
I. V. Silkin ◽  
I. P. Chernov ◽  
...  

AbstractClosed-shell atoms scattered from a metal surface exchange energy and momentum with surface phonons mostly via the interposed surface valence electrons, i.e., via the creation of virtual electron-hole pairs. The latter can then decay into surface phonons via electron-phonon interaction, as well as into acoustic surface plasmons (ASPs). While the first channel is the basis of the current inelastic atom scattering (IAS) surface-phonon spectroscopy, no attempt to observe ASPs with IAS has been made so far. In this study we provide evidence of ASP in Ni(111) with both Ne atom scattering and He atom scattering. While the former measurements confirm and extend so far unexplained data, the latter illustrate the coupling of ASP with phonons inside the surface-projected phonon continuum, leading to a substantial reduction of the ASP velocity and possibly to avoided crossing with the optical surface phonon branches. The analysis is substantiated by a self-consistent calculation of the surface response function to atom collisions and of the first-principle surface-phonon dynamics of Ni(111). It is shown that in Ni(111) ASP originate from the majority-spin Shockley surface state and are therefore collective oscillation of surface electrons with the same spin, i.e. it represents a new kind of collective quasiparticle: a Spin Acoustic Surface Plasmon (SASP).

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nikolai B. Chichkov ◽  
Andrey B. Evlyukhin ◽  
Boris N. Chichkov

Abstract It is well-known that a quantum of light (photon) has a zero mass in vacuum. Entering into a medium the photon creates a quasiparticle (polariton, plasmon, surface-phonon, surface-plasmon polariton, etc.) whose rest mass is generally not zero. In this letter, devoted to the memory of Mark Stockman, we evaluate the rest mass of light-induced surface-plasmon polaritons (SPPs) and discuss an idea that collisions of two massive SPP quasiparticles can result in changes of their frequencies according to the energy and momentum conservation laws.


Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Chaochao Jian ◽  
Xiangchao Ma ◽  
Jianqi Zhang ◽  
Jiali Jiang

Abstract Borophene monolayer with its intrinsic metallic and anisotropic band structures exhibits extraordinary electronic, optical, and transport properties. Especially, the high density of Dirac electrons enables promising applications for building low-loss broadband SPP devices. However, a systematic characterization of the surface plasmon polariton (SPP) properties and hot carriers generated from the inevitable SPP decay in borophene has not been reported so far. Most importantly, the mechanism for SPP losses remains obscurely quantified. In this work, from a fully first-principles perspective, we explicitly evaluate the main loss effects of SPP in borophene, including the Drude resistance, phonon-assisted intraband and direct interband electronic transitions. With this knowledge, we further calculate the frequency- and polarization-dependent SPP response of borophene, and evaluate some typical application-dependent figure of merits of SPP. On the other hand, we evaluate the generation and transport properties of plasmon-driven hot carriers in borophene, involving energy- and momentum-dependent carrier lifetimes and mean free paths, which provide deeper insight toward the transport of hot carriers at the nanoscale. These results indicate that borophene has promising applications in next-generation low-loss optoelectronic devices and photocatalytic reactors.


2018 ◽  
Vol 122 (50) ◽  
pp. 29039-29043
Author(s):  
I. Yu. Sklyadneva ◽  
G. Benedek ◽  
R. Heid ◽  
P. M. Echenique ◽  
J. P. Toennies ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiawei Zhou ◽  
Hyun D. Shin ◽  
Ke Chen ◽  
Bai Song ◽  
Ryan A. Duncan ◽  
...  

AbstractAs a foundational concept in many-body physics, electron–phonon interaction is essential to understanding and manipulating charge and energy flow in various electronic, photonic, and energy conversion devices. While much progress has been made in uncovering how phonons affect electron dynamics, it remains a challenge to directly observe the impact of electrons on phonon transport, especially at environmental temperatures. Here, we probe the effect of charge carriers on phonon heat transport at room temperature, using a modified transient thermal grating technique. By optically exciting electron-hole pairs in a crystalline silicon membrane, we single out the effect of the phonon–carrier interaction. The enhanced phonon scattering by photoexcited free carriers results in a substantial reduction in thermal conductivity on a nanosecond timescale. Our study provides direct experimental evidence of the elusive role of electron–phonon interaction in phonon heat transport, which is important for understanding heat conduction in doped semiconductors. We also highlight the possibility of using light to dynamically control thermal transport via electron–phonon coupling.


2020 ◽  
Vol 32 (25) ◽  
pp. 2002072 ◽  
Author(s):  
Giorgio Benedek ◽  
Joseph R. Manson ◽  
Salvador Miret‐Artés

Sign in / Sign up

Export Citation Format

Share Document