scholarly journals Freestanding bilayer plasmonic waveguide coupling mechanism for ultranarrow electromagnetic-induced transparency band generation

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li Yu ◽  
Yuzhang Liang ◽  
Shuwen Chu ◽  
Huixuan Gao ◽  
Qiao Wang ◽  
...  

AbstractStrong electromagnetic coupling among plasmonic nanostructures paves a new route toward efficient manipulation of photons. Particularly, plasmon-waveguide systems exhibit remarkable optical properties by simply tailoring the interaction among elementary elements. In this paper, we propose and demonstrate a freestanding bilayer plasmonic-waveguide structure exhibiting an extremely narrow transmission peak with efficiency up to 92%, the linewidth of only 0.14 nm and an excellent out of band rejection. The unexpected optical behavior considering metal loss is consistent with that of electromagnetic induced transparency, arising from the destructive interference of super-radiative nanowire dipolar mode and transversal magnetic waveguide mode. Furthermore, for slow light application, the designed plasmonic-waveguide structure has a high group index of approximately 1.2 × 105 at the maximum of the transmission band. In sensing application, its lowest sensing figure of merit is achieved up to 8500 due to the ultra-narrow linewidth of the transmission band. This work provides a valuable photonics design for developing high performance nano-photonic devices.

2021 ◽  
Author(s):  
Haseeb Ahmad Khan ◽  
Syed Waqar Shah ◽  
Adnan Daud Khan

Abstract We report numerically electromagnetic-induced transparency (EIT) and Fano resonances in simple plasmonic metasurfaces consist of gold nanobars arranged in Pi, H and four shaped fashion. The bright and dark elements in the metasurfaces are responsible for the emergence of EIT and Fano effects in the transmission spectrum. The concept of symmetry breaking is also introduced by incorporating multiple cavities in the metasurface, which relaxes the dipole coupling selection rules resulting in a mixture of dipole and higher order modes that interact and engenders EIT and Fano modes simultaneously in a nanostructure. Furthermore, the EIT and Fano resonances experience a significant red-shift by increasing the refractive index of the background medium due to which high sensitivity of around 574 nmRIU -1 , figure of merit of 32, and contrast ratio of 41% are realized. Moreover, the effective group index of the proposed metasurface is retrieved and is observed to be very high around the steep asymmetric Fano line shape and within the EIT window, signifying its potential use in slow light applications.


Author(s):  
Pengju Yao ◽  
Biao Zeng ◽  
Enduo Gao ◽  
Hao Zhang ◽  
Chao Liu ◽  
...  

Abstract We propose a novel terahertz metamaterial structure based on patterned monolayer graphene. This structure produces an evident dual plasmon-induced transparency (PIT) phenomenon due to destructive interference between bright and dark modes. Since the Fermi level of graphene can be adjusted by an external bias voltage, the PIT phenomenon can be tuned by adjusting the voltage. Then the coupled-mode theory (CMT) is introduced to explore the internal mechanism of the PIT. After that, we investigate the variation of absorption rate at different graphene carrier mobilities, and it shows that the absorption rate of this structure can reach 50%, which is a guideline for the realization of graphene terahertz absorption devices. In addition, through the study of the slow-light performance for this structure, it is found that its group index is as high as 928, which provides a specific theoretical basis for the study of graphene slow-light devices.


2017 ◽  
Vol 111 (10) ◽  
pp. 101105 ◽  
Author(s):  
Chengwei Sun ◽  
Kexiu Rong ◽  
Fengyuan Gan ◽  
Saisai Chu ◽  
Qihuang Gong ◽  
...  

Author(s):  
Abdelkader Mouadili ◽  
El Houssaine El Boudouti ◽  
Housni Al-Wahsh ◽  
Abdellatif Akjouj ◽  
Bahram Djafari-Rouhani ◽  
...  

2019 ◽  
Vol 56 (4) ◽  
pp. 041603
Author(s):  
王娅茹 Wang Yaru ◽  
梁兰菊 Liang Lanju ◽  
杨茂生 Yang Maosheng ◽  
王旭娟 Wang Xujuan ◽  
王岩 Wang Yan

2020 ◽  
Vol 532 (6) ◽  
pp. 2000059
Author(s):  
Xiao‐Yu Zhu ◽  
Zhao Jin ◽  
Erjun Liang ◽  
Shou Zhang ◽  
Shi‐Lei Su

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Zhimin Liu ◽  
Enduo Gao ◽  
Zhenbin Zhang ◽  
Hongjian Li ◽  
Hui Xu ◽  
...  

AbstractThe plasmon-induced transparency (PIT), which is destructive interference between the superradiation mode and the subradiation mode, is studied in patterned graphene-based terahertz metasurface composed of graphene ribbons and graphene strips. As the results of finite-difference time-domain (FDTD) simulation and coupled-mode theory (CMT) fitting, the PIT can be dynamically modulated by the dual-mode. The left (right) transmission dip is mainly tailored by the gate voltage applied to graphene ribbons (stripes), respectively, meaning a dual-mode on-to-off modulator is realized. Surprisingly, an absorbance of 50% and slow-light property of 0.7 ps are also achieved, demonstrating the proposed PIT metasurface has important applications in absorption and slow-light. In addition, coupling effects between the graphene ribbons and the graphene strips in PIT metasurface with different structural parameters also are studied in detail. Thus, the proposed structure provides a new basis for the dual-mode on-to-off multi-function modulators.


Sign in / Sign up

Export Citation Format

Share Document