hybrid plasmonic waveguide
Recently Published Documents


TOTAL DOCUMENTS

234
(FIVE YEARS 65)

H-INDEX

29
(FIVE YEARS 5)

Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 64
Author(s):  
Qian Zhang ◽  
Jinbin Pan ◽  
Shulong Wang ◽  
Yongqian Du ◽  
Jieyu Wu

Facing the problems of ohmic loss and short propagation length, the application of plasmonic waveguides is limited. Here, a triangle hybrid plasmonic waveguide is introduced, where a cylinder silicon waveguide is separated from the triangle prism silver waveguide by a nanoscale silica gap. The process of constant optimization of waveguide structure is completed and simulation results indicate that the propagation length could reach a length of 510 μm, and the normalized mode area could reach 0.03 along with a high figure of merit 3150. This implies that longer propagation length could be simultaneously achieved along with relatively ultra-deep subwavelength mode confinement due to the hybridization between metallic plasmon polarization mode and silicon waveguide mode, compared with previous study. By an analysis of fabrication errors, it is confirmed that this waveguide is fairly stable over a wide error range. Additionally, the excellent performance of this is further proved by the comparison with other hybrid plasmonic waveguides. Our work is significant to manipulate light waves at sub-wavelength dimensions and enlarge the application fields, such as light detection and photoelectric sensors, which also benefit the improvement of the integration of optical devices.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2555
Author(s):  
Xin Zhang ◽  
Meng Yan ◽  
Tingyin Ning ◽  
Lina Zhao ◽  
Shouzhen Jiang ◽  
...  

A high Q-factor of the nanocavity can effectively reduce the threshold of nanolasers. In this paper, a modified nanostructure composed of a silver grating on a low-index dielectric layer (LID) and a high-index dielectric layer (HID) was proposed to realize a nanolaser with a lower lasing threshold. The nanostructure supports a hybrid plasmonic waveguide mode with a very-narrow line-width that can be reduced to about 1.79 nm by adjusting the thickness of the LID/HID layer or the duty ratio of grating, and the Q-factor can reach up to about 348. We theoretically demonstrated the lasing behavior of the modified nanostructures using the model of the combination of the classical electrodynamics and the four-level two-electron model of the gain material. The results demonstrated that the nanolaser based on the hybrid plasmonic waveguide mode can really reduce the lasing threshold to 0.042 mJ/cm2, which is about three times lower than the nanolaser based on the surface plasmon. The lasing action can be modulated by the thickness of the LID layer, the thickness of the HID layer and the duty cycle of grating. Our findings could provide a useful guideline to design low-threshold and highly-efficient miniaturized lasers.


Sign in / Sign up

Export Citation Format

Share Document