scholarly journals Spotted fever group rickettsiae (SFGR) detection in ticks following reported human case of Japanese spotted fever in Niigata Prefecture, Japan

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Reiko Arai ◽  
Megumi Sato ◽  
Miwako Kato ◽  
Junko Aoki ◽  
Akiko Nishida ◽  
...  

AbstractJapanese spotted fever, a tick-borne disease caused by Rickettsia japonica, was firstly described in southwestern Japan. There was a suspicion of Rickettsia japonica infected ticks reaching the non-endemic Niigata Prefecture after a confirmed case of Japanese spotted fever in July 2014. Therefore, from 2015 to 2017, 38 sites were surveyed and rickettsial pathogens were investigated in ticks from north to south of Niigata Prefecture including Sado island. A total of 3336 ticks were collected and identified revealing ticks of three genera and ten species: Dermacentor taiwanensis, Haemaphysalis flava, Haemaphysalis hystricis, Haemaphysalis longicornis, Haemaphysalis megaspinosa, Ixodes columnae, Ixodes monospinosus, Ixodes nipponensis, Ixodes ovatus, and Ixodes persulcatus. Investigation of rickettsial DNA showed no ticks infected by R. japonica. However, three species of spotted fever group rickettsiae (SFGR) were found in ticks, R. asiatica, R. helvetica, and R. monacensis, confirming Niigata Prefecture as a new endemic area to SFGR. These results highlight the need for public awareness of the occurrence of this tick-borne disease, which necessitates the establishment of public health initiatives to mitigate its spread.

2000 ◽  
Vol 51 (1) ◽  
pp. 55-58 ◽  
Author(s):  
Hiromi FUJITA ◽  
Nobuhiro TAKADA ◽  
Emiko ISOGAI ◽  
Yuriko WATANABE ◽  
Takuya ITO

2020 ◽  
Author(s):  
Jixu Li ◽  
Shuang Zhang ◽  
Wanfeng Liang ◽  
Shaowei Zhao ◽  
Hao Wang ◽  
...  

Abstract BackgroundYanbian is located at the junction between China, Russia, and North Korea. We aimed to determine the species distribution and pathogens carried by ticks in Yanbian.MethodsA total of 2673 unattached ticks were collected from eight counties and cities in Yanbian and classified morphologically. Candidatus Rickettsia tarasevichiae (CRT), spotted fever group Rickettsia (SFGR), severe fever thrombocytopenia syndrome virus (SFTSV), Theileria, and other pathogens were detected using polymerase chain reaction (PCR) and real-time quantitative polymerase chain reaction followed by phylogenetic and genotypic analyses.ResultsAccording to the morphological classification, the main tick species in Yanbian were Haemaphysalis longicornis, Ixodes persulcatus, Dermacentor silvarum, Haemaphysalis japonica, and Haemaphysalis concinna. Candidatus Rickettsia tarasevichiae, spotted fever group Rickettsia, severe fever thrombocytopenia syndrome virus, and Theileria orientalis were detected in H. longicornis, Candidatus Rickettsia tarasevichiae, spotted fever group Rickettsia, and severe fever thrombocytopenia syndrome virus were detected in I. persulcatus, H. japonica, and D. silvarum, but only severe fever thrombocytopenia syndrome virus was detected in H. concinna. Mixed infection with Candidatus Rickettsia tarasevichiae and severe fever thrombocytopenia syndrome virus was found in I. persulcatus and H. japonica. The gene sequences of all tested pathogens exhibited 95.7%–100% homology with sequences registered in GenBank. Phylogenetic analysis showed that different spotted fever group Rickettsia and severe fever thrombocytopenia syndrome virus genotypes were closely related to the Korean strains. We provide the first evidence for the presence of the spotted fever group Rickettsia genotypes of Candidatus Rickettsia longicornii, ompA, ompB, sca4, and rrs, in Haemaphysalis longicornis in Yanbian. ConclusionsThese results provide epidemiological data to support the prevention and control of ticks and tick-borne diseases in the border areas of China, North Korea, and Russia.


Author(s):  
Qian Wang ◽  
Wen-Bin Guo ◽  
Yu-Sheng Pan ◽  
Bao-Gui Jiang ◽  
Chun-Hong Du ◽  
...  

Abstract Spotted fever group rickettsiae, mainly maintained and transmitted by ticks, are important etiological agents of (re)emerging zoonotic diseases worldwide. It is of great significance to investigate spotted fever group rickettsiae in ticks in different areas for the prevention and control of rickettsioses. In this study, a total of 305 ticks were collected from wild and domestic animals in Chongqing, Guizhou, Yunnan, and Guangxi provinces of southwestern China during 2017–2019 and examined for the presence of spotted fever group rickettsiae by PCR with primers targeting the partial gltA, ompA, rrs, and htrA genes. Results showed that two spotted fever group rickettsiae species, including the pathogenic Candidatus Rickettsia jingxinensis (Rickettsiales: Rickettsiaceae) and a potential novel species Rickettsia sp. sw (Rickettsiales: Rickettsiaceae), were identified. The Ca. R. jingxinensis sequences were recovered from Rhipicephalus microplus (Ixodida: Ixodidae) and Haemaphysalis longicornis (Ixodida: Ixodidae) ticks and phylogenetically clustered with previous Ca. R. jingxinensis, Ca. R. longicornii (Rickettsiales: Rickettsiaceae), and Rickettsia sp. XY118 (Rickettsiales: Rickettsiaceae) strains. Rickettsia sp. sw was detected in Amblyomma geoemydae (Ixodida: Ixodidae) and Rh. microplus. Interestingly, as far as we know, this was the first report of Rickettsia (Rickettsiales: Rickettsiaceae) in A. geoemydae. Phylogenetic analyses indicated that this potential novel species was closely related to R. aeschlimannii (Rickettsiales: Rickettsiaceae) with gltA and ompA genes and grouped in a cluster composed of R. montanensis (Rickettsiales: Rickettsiaceae), R. raoultii (Rickettsiales: Rickettsiaceae), R. aeschlimannii, R. massiliae (Rickettsiales: Rickettsiaceae), and R. rhipicephali (Rickettsiales: Rickettsiaceae) with htrA, while formed a separate clade with rrs. The pathogenicity of Rickettsia sp. sw should be further confirmed. These results expand the knowledge of the geographical distribution and vector distribution of spotted fever group rickettsiae in China and are useful for assessing the potential public health risk.


2014 ◽  
Vol 52 (11) ◽  
pp. 3960-3966 ◽  
Author(s):  
M. F. Vaughn ◽  
J. Delisle ◽  
J. Johnson ◽  
G. Daves ◽  
C. Williams ◽  
...  

2018 ◽  
Vol 24 (11) ◽  
pp. 2105-2107 ◽  
Author(s):  
Xuhong Yin ◽  
Shengchun Guo ◽  
Chunlian Ding ◽  
Minzhi Cao ◽  
Hiroki Kawabata ◽  
...  

2020 ◽  
Author(s):  
Maria Vikentjeva ◽  
Julia Geller ◽  
Jaanus Remm ◽  
Irina Golovljova

Abstract BACKGROUND Rickettsia spp. are human pathogens that cause a number of diseases and are transmitted by arthropods, including ixodid ticks. Estonia contributes a region, where the distribution area of two exophilic tick species of known medical importance, Ixodes persulcatus and I. ricinus, overlap. The presence of the nidicolous rodent-associated I. trianguliceps has recently been shown for Estonia. Although there is no Estonian data available on human disease caused by tick-borne Rickettsia spp., the presence of three Rickettsia species in non-nidicolous ticks, albiet at very dissimilar rates, was also previously reported. The aim of this studywas to screen, identify and characterize Rickettsia species in nidicolous and non-nidicolous ticks attached to rodents. RESULTS Nymphs and larvae of I. ricinus ( n = 1004), I . persulcatus ( n = 75) and I. trianguliceps ( n = 117) attached to rodents and shrews caught in different parts of Estonia were studied for the presence of Rickettsia spp. by nested PCR. Ticks were removed from 314 small animals of 5 species (bank voles Myodes glareolus , yellow necked mice Apodemus flavicollis , striped field mice A. agrarius, pine voles M. subterranius and common shrews S. araneus) . Rickettsial DNA was detected in 8,7% (103/1186) studied ticks. In addition to R. helvetica, previously found in questing ticks, this study reports the first identification of the recently described I. trianguliceps- associated Candidatus R. uralica in west of the Ural.


2015 ◽  
Vol 17 (11-12) ◽  
pp. 874-878 ◽  
Author(s):  
Jana Radzijevskaja ◽  
Algimantas Paulauskas ◽  
Asta Aleksandraviciene ◽  
Indre Jonauskaite ◽  
Michal Stanko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document