scholarly journals The identification of the Rosa S-locus and implications on the evolution of the Rosaceae gametophytic self-incompatibility systems

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. Vieira ◽  
J. Pimenta ◽  
A. Gomes ◽  
J. Laia ◽  
S. Rocha ◽  
...  

AbstractIn Rosaceae species, two gametophytic self-incompatibility (GSI) mechanisms are described, the Prunus self-recognition system and the Maleae (Malus/Pyrus/Sorbus) non-self- recognition system. In both systems the pistil component is a S-RNase gene, but from two distinct phylogenetic lineages. The pollen component, always a F-box gene(s), in the case of Prunus is a single gene, and in Maleae there are multiple genes. Previously, the Rosa S-locus was mapped on chromosome 3, and three putative S-RNase genes were identified in the R. chinensis ‘Old Blush’ genome. Here, we show that these genes do not belong to the S-locus region. Using R. chinensis and R. multiflora genomes and a phylogenetic approach, we identified the S-RNase gene, that belongs to the Prunus S-lineage. Expression patterns support this gene as being the S-pistil. This gene is here also identified in R. moschata, R. arvensis, and R. minutifolia low coverage genomes, allowing the identification of positively selected amino acid sites, and thus, further supporting this gene as the S-RNase. Furthermore, genotype–phenotype association experiments also support this gene as the S-RNase. For the S-pollen GSI component we find evidence for multiple F-box genes, that show the expected expression pattern, and evidence for diversifying selection at the F-box genes within an S-haplotype. Thus, Rosa has a non-self-recognition system, like in Maleae species, despite the S-pistil gene belonging to the Prunus S-RNase lineage. These findings are discussed in the context of the Rosaceae GSI evolution. Knowledge on the Rosa S-locus has practical implications since genes controlling floral and other ornamental traits are in linkage disequilibrium with the S-locus.

2016 ◽  
Vol 57 (11) ◽  
pp. 2403-2416 ◽  
Author(s):  
Ken-ichi Kubo ◽  
Mai Tsukahara ◽  
Sota Fujii ◽  
Kohji Murase ◽  
Yuko Wada ◽  
...  

2018 ◽  
Author(s):  
Katarína Bod’bvá ◽  
Tadeas Priklopil ◽  
David L. Field ◽  
Nicholas H. Barton ◽  
Melinda Pickup

AbstractSelf-incompatibility (SI) is a genetically based recognition system that functions to prevent self-fertilization and mating among related plants. An enduring puzzle in SI is how the high diversity observed in nature arises and is maintained. Based on the underlying recognition mechanism, SI can be classified into two main groups: self- and non-self recognition. Most work has focused on diversification within self-recognition systems despite expected differences between the two groups in the evolutionary pathways and outcomes of diversification. Here, we use a deterministic population genetic model and stochastic simulations to investigate how novel S-haplotypes evolve in a gametophytic non-self recognition (SRNase/S Locus F-box (SLF)) SI system. For this model the pathways for diversification involve either the maintenance or breakdown of SI and can vary in the order of mutations of the female (SRNase) and male (SLF) components. We show analytically that diversification can occur with high inbreeding depression and self-pollination, but this varies with evolutionary pathway and level of completeness (which determines the number of potential mating partners in the population), and in general is more likely for lower haplotype number. The conditions for diversification are broader in stochastic simulations of finite population size. However, the number of haplotypes observed under high inbreeding and moderate to high self-pollination is less than that commonly observed in nature. Diversification was observed through pathways that maintain SI as well as through self-compatible intermediates. Yet the lifespan of diversified haplotypes was sensitive to their level of completeness. By examining diversification in a non-self recognition SI system, this model extends our understanding of the evolution and maintenance of haplotype diversity observed in a recognition system common in flowering plants.


Science ◽  
1990 ◽  
Vol 250 (4983) ◽  
pp. 937-941 ◽  
Author(s):  
V Haring ◽  
J. Gray ◽  
B. McClure ◽  
M. Anderson ◽  
A. Clarke

Genetics ◽  
2018 ◽  
pp. genetics.300748.2018 ◽  
Author(s):  
Katarína Boďová ◽  
Tadeas Priklopil ◽  
David L. Field ◽  
Nicholas H. Barton ◽  
Melinda Pickup

Science ◽  
2010 ◽  
Vol 330 (6005) ◽  
pp. 796-799 ◽  
Author(s):  
K.-i. Kubo ◽  
T. Entani ◽  
A. Takara ◽  
N. Wang ◽  
A. M. Fields ◽  
...  

Genetics ◽  
2002 ◽  
Vol 162 (2) ◽  
pp. 931-940 ◽  
Author(s):  
Keiichi Sato ◽  
Takeshi Nishio ◽  
Ryo Kimura ◽  
Makoto Kusaba ◽  
Tohru Suzuki ◽  
...  

AbstractBrassica self-incompatibility (SI) is controlled by SLG and SRK expressed in the stigma and by SP11/SCR expressed in the anther. We determined the sequences of the S domains of 36 SRK alleles, 13 SLG alleles, and 14 SP11 alleles from Brassica oleracea and B. rapa. We found three S haplotypes lacking SLG genes in B. rapa, confirming that SLG is not essential for the SI recognition system. Together with reported sequences, the nucleotide diversities per synonymous and nonsynonymous site (πS and πN) at the SRK, SLG, and SP11 loci within B. oleracea were computed. The ratios of πN:πS for SP11 and the hypervariable region of SRK were significantly >1, suggesting operation of diversifying selection to maintain the diversity of these regions. In the phylogenetic trees of 12 SP11 sequences and their linked SRK alleles, the tree topology was not significantly different between SP11 and SRK, suggesting a tight linkage of male and female SI determinants during the evolutionary course of these haplotypes. Genetic exchanges between SLG and SRK seem to be frequent; three such recent exchanges were detected. The evolution of S haplotypes and the effect of gene conversion on self-incompatibility are discussed.


Genetics ◽  
2000 ◽  
Vol 154 (1) ◽  
pp. 413-420 ◽  
Author(s):  
Makoto Kusaba ◽  
Masanori Matsushita ◽  
Keiichi Okazaki ◽  
Yoko Satta ◽  
Takeshi Nishio

Abstract Self-incompatibility (SI) is a mechanism for preventing self-fertilization in flowering plants. In Brassica, it is controlled by a single multi-allelic locus, S, and it is believed that two highly polymorphic genes in the S locus, SLG and SRK, play central roles in self-recognition in stigmas. SRK is a putative receptor protein kinase, whose extracellular domain exhibits high similarity to SLG. We analyzed two pairs of lines showing cross-incompatibility (S2 and S2-b; S13 and S13-b). In S2 and S2-b, SRKs were more highly conserved than SLGs. This was also the case with S13 and S13-b. This suggests that the SRKs of different lines must be conserved for the lines to have the same self-recognition specificity. In particular, SLG2-b showed only 88.5% identity to SLG2, which is comparable to that between the SLGs of different S haplotypes, while SRK2-b showed 97.3% identity to SRK2 in the S domain. These findings suggest that the SLGs in these S haplotypes are not important for self-recognition in SI.


Genetics ◽  
2002 ◽  
Vol 162 (1) ◽  
pp. 89-101 ◽  
Author(s):  
Qijun Xiang ◽  
N Louise Glass

AbstractA non-self-recognition system called vegetative incompatibility is ubiquitous in filamentous fungi and is genetically regulated by het loci. Different fungal individuals are unable to form viable heterokaryons if they differ in allelic specificity at a het locus. To identify components of vegetative incompatibility mediated by allelic differences at the het-c locus of Neurospora crassa, we isolated mutants that suppressed phenotypic aspects of het-c vegetative incompatibility. Three deletion mutants were identified; the deletions overlapped each other in an ORF named vib-1 (vegetative incompatibility blocked). Mutations in vib-1 fully relieved growth inhibition and repression of conidiation conferred by het-c vegetative incompatibility and significantly reduced hyphal compartmentation and death rates. The vib-1 mutants displayed a profuse conidiation pattern, suggesting that VIB-1 is a regulator of conidiation. VIB-1 shares a region of similarity to PHOG, a possible phosphate nonrepressible acid phosphatase in Aspergillus nidulans. Native gel analysis of wild-type strains and vib-1 mutants indicated that vib-1 is not the structural gene for nonrepressible acid phosphatase, but rather may regulate nonrepressible acid phosphatase activity.


Sign in / Sign up

Export Citation Format

Share Document