scholarly journals A novel approach to the classification of terrestrial drainage networks based on deep learning and preliminary results on solar system bodies

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Carlo Donadio ◽  
Massimo Brescia ◽  
Alessia Riccardo ◽  
Giuseppe Angora ◽  
Michele Delli Veneri ◽  
...  

AbstractSeveral approaches were proposed to describe the geomorphology of drainage networks and the abiotic/biotic factors determining their morphology. There is an intrinsic complexity of the explicit qualification of the morphological variations in response to various types of control factors and the difficulty of expressing the cause-effect links. Traditional methods of drainage network classification are based on the manual extraction of key characteristics, then applied as pattern recognition schemes. These approaches, however, have low predictive and uniform ability. We present a different approach, based on the data-driven supervised learning by images, extended also to extraterrestrial cases. With deep learning models, the extraction and classification phase is integrated within a more objective, analytical, and automatic framework. Despite the initial difficulties, due to the small number of training images available, and the similarity between the different shapes of the drainage samples, we obtained successful results, concluding that deep learning is a valid way for data exploration in geomorphology and related fields.

Author(s):  
Chinedu Godswill Olebu ◽  
Jide Julius Popoola ◽  
Michael Rotimi Adu ◽  
Yekeen Olajide Olasoji ◽  
Samson Adenle Oyetunji

In face recognition system, the accuracy of recognition is greatly affected by varying degree of illumination on both the probe and testing faces. Particularly, the changes in direction and intensity of illumination are two major contributors to varying illumination. In overcoming these challenges, different approaches had been proposed. However, the study presented in this paper proposes a novel approach that uses deep learning, in a MATLAB environment, for classification of face images under varying illumination conditions. One thousand one hundred (1100) face images employed were obtained from Yale B extended database. The obtained face images were divided into ten (10) folders. Each folder was further divided into seven (7) subsets based on different azimuthal angle of illumination used. The images obtained were filtered using a combination of linear filters and anisotropic diffusion filter. The filtered images were then segmented into light and dark zones with respect to the azimuthal and elevation angles of illumination. Eighty percent (80%) of the images in each subset which forms the training set, were used to train the deep learning network while the remaining twenty percent (20%), which forms the testing set, were used to test the accuracy of classification of the deep learning network generated. With three successive iterations, the performance evaluation results showed that the classification accuracy varies from 81.82% to 100.00%.   


2020 ◽  
Vol 199 ◽  
pp. 104586 ◽  
Author(s):  
Afshin Azizi ◽  
Yousef Abbaspour Gilandeh ◽  
Tarahom Mesri-Gundoshmian ◽  
Ali Akbar Saleh-Bigdeli ◽  
Hamid Abrishami Moghaddam

Author(s):  
Zinah Mohsin Arkah ◽  
Dalya S. Al-Dulaimi ◽  
Ahlam R. Khekan

<p>Skin cancer is an example of the most dangerous disease. Early diagnosis of skin cancer can save many people’s lives. Manual classification methods are time-consuming and costly. Deep learning has been proposed for the automated classification of skin cancer. Although deep learning showed impressive performance in several medical imaging tasks, it requires a big number of images to achieve a good performance. The skin cancer classification task suffers from providing deep learning with sufficient data due to the expensive annotation process and required experts. One of the most used solutions is transfer learning of pre-trained models of the ImageNet dataset. However, the learned features of pre-trained models are different from skin cancer image features. To end this, we introduce a novel approach of transfer learning by training the pre-trained models of the ImageNet (VGG, GoogleNet, and ResNet50) on a large number of unlabelled skin cancer images, first. We then train them on a small number of labeled skin images. Our experimental results proved that the proposed method is efficient by achieving an accuracy of 84% with ResNet50 when directly trained with a small number of labeled skin and 93.7% when trained with the proposed approach.</p>


Sign in / Sign up

Export Citation Format

Share Document