scholarly journals Vestibular attenuation to random-waveform galvanic vestibular stimulation during standing and treadmill walking

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kelci B. Hannan ◽  
Makina K. Todd ◽  
Nicole J. Pearson ◽  
Patrick A. Forbes ◽  
Christopher J. Dakin

AbstractThe ability to move and maintain posture is critically dependent on motion and orientation information provided by the vestibular system. When this system delivers noisy or erred information it can, in some cases, be attenuated through habituation. Here we investigate whether multiple mechanisms of attenuation act to decrease vestibular gain due to noise added using supra-threshold random-waveform galvanic vestibular stimulation (GVS). Forty-five participants completed one of three conditions. Each condition consisted of two 4-min standing periods with stimulation surrounding a 1-h period of either walking with stimulation, walking without stimulation, or sitting quietly. An instrumented treadmill recorded horizontal forces at the feet during standing and walking. We quantified response attenuation to GVS by comparing vestibular stimulus-horizontal force gain between conditions. First stimulus exposure caused an 18% decrease in gain during the first 40 s of standing. Attenuation recommenced only when subjects walked with stimulation, resulting in a 38% decrease in gain over 60 min that did not transfer to standing following walking. The disparity in attenuation dynamics and absent carry over between standing and walking suggests that two mechanisms of attenuation, one associated with first exposure to the stimulus and another that is task specific, may act to decrease vestibulomotor gain.

2003 ◽  
Vol 12 (2-3) ◽  
pp. 77-85
Author(s):  
Anthony P. Scinicariello ◽  
J. Timothy Inglis ◽  
J.J. Collins

Galvanic vestibular stimulation (GVS) is a technique in which small currents are delivered transcutaneously to the afferent nerve endings of the vestibular system through electrodes placed over the mastoid bones. The applied current alters the firing rates of the peripheral vestibular afferents, causing a shift in a standing subject's vestibular perception and a corresponding postural sway. Previously, we showed that in subjects who are facing forward, stochastic bipolar binaural GVS leads to coherent stochastic mediolateral postural sway. The goal of this pilot study was to extend that work and to test the hypothesis that in subjects who are facing forward, stochastic monopolar binaural GVS leads to coherent stochastic anteroposterior postural sway. Stochastic monopolar binaural GVS was applied to ten healthy young subjects. Twenty-four trials, each containing a different galvanic input stimulus from among eight different frequency ranges, were conducted on each subject. Postural sway was evaluated through analysis of the center-of-pressure (COP) displacements under each subject's feet. Spectral analysis was performed on the galvanic stimuli and the COP displacement time series to calculate the coherence spectra. Significant coherence was found between the galvanic input signal and the anteroposterior COP displacement in some of the trials (i.e., at least one) in nine of the ten subjects. In general, the coherence values were highest for the mid-range frequencies that were tested, and lowest for the low- and high-range frequencies. However, the coherence values we obtained were lower than those we previously reported for stochastic bipolar binaural GVS and mediolateral sway. These differences may be due to fundamental characteristics of the vestibular system such as lower sensitivity to symmetric changes in afferent firing dynamics, and/or differences between the biomechanics of anteroposterior and mediolateral sway.


2009 ◽  
Vol 107 (4) ◽  
pp. 1089-1094 ◽  
Author(s):  
Chikara Abe ◽  
Kunihiko Tanaka ◽  
Chihiro Awazu ◽  
Hironobu Morita

Recent data from our laboratory demonstrated that, when rats are raised in a hypergravity environment, the sensitivity of the vestibulo-cardiovascular reflex decreases. In a hypergravity environment, static input to the vestibular system is increased; however, because of decreased daily activity, phasic input to the vestibular system may decrease. This decrease may induce use-dependent plasticity of the vestibulo-cardiovascular reflex. Accordingly, we hypothesized that galvanic vestibular stimulation (GVS) may compensate the decrease in phasic input to the vestibular system, thereby preserving the vestibulo-cardiovascular reflex. To examine this hypothesis, we measured horizontal and vertical movements of rats under 1-G or 3-G environments as an index of the phasic input to the vestibular system. We then raised rats in a 3-G environment with or without GVS for 6 days and measured the pressor response to linear acceleration to examine the sensitivity of the vestibulo-cardiovascular reflex. The horizontal and vertical movement of 3-G rats was significantly less than that of 1-G rats. The pressor response to forward acceleration was also significantly lower in 3-G rats (23 ± 1 mmHg in 1-G rats vs. 12 ± 1 mmHg in 3-G rats). The pressor response was preserved in 3-G rats with GVS (20 ± 1 mmHg). GVS stimulated Fos expression in the medial vestibular nucleus. These results suggest that GVS stimulated vestibular primary neurons and prevent hypergravity-induced decrease in sensitivity of the vestibulo-cardiovascular reflex.


1995 ◽  
Vol 73 (2) ◽  
pp. 896-901 ◽  
Author(s):  
J. T. Inglis ◽  
C. L. Shupert ◽  
F. Hlavacka ◽  
F. B. Horak

1. We investigated the role of the vestibular system in postural control by combining galvanic vestibular stimulation (0.2-0.5 mA) with platform translations in standing subjects. Vestibular stimulation delivered 500 ms before and continuously during the platform translation produced little change in the earliest center of pressure (COP) and center of mass (COM) movements in response to platform translations, but resulted in large changes during the execution of the postural movement and in the final equilibrium position. 2. Vestibular stimulation produced anterior or posterior shifts in the position of COP and COM, depending on the polarity of the galvanic current. These shifts were larger during platform translations than during quiet stance. The peak of these shifts in COP and COM occurred at 1.5-2.5 s after the onset of platform translation, and increased in magnitude with increasing platform velocity. The final equilibrium positions of COP and COM were also shifted, but these shifts were smaller and not dependent on platform velocity. 3. These results imply that a tonic step of galvanic current to the vestibular system can change the final equilibrium position for an automatic postural response. Furthermore, these results indicate that the vestibular system may play a larger role in interpreting sensory reafference during postural movements, and especially during fast postural movements, than in controlling quiet stance. Finally, these results indicate that the vestibular system does not play a critical role in triggering the earliest postural responses, but it may be critical in establishing an internal reference for verticality.


2021 ◽  
Vol 12 ◽  
Author(s):  
Takamichi Tohyama ◽  
Kunitsugu Kondo ◽  
Yohei Otaka

Introduction: There is growing evidence supporting the relationship of vertical misperception and poor balance control with asymmetrical standing posture in patients with stroke. Although the vestibular system has been shown to be responsible for vertical misperception and balance disorders, the effect of galvanic vestibular stimulation (GVS) on both vertical misperception and postural asymmetry after stroke remains elusive. The aim of this study was to investigate the effects of GVS on visual verticality and postural asymmetry after stroke and to clarify whether the effects differ depending on the polarity of the stimulation and hemispheric lesion side.Methods: We measured the subjective visual vertical (SVV) and body weight distribution on each foot in an upright stance in 24 patients with a hemispheric stroke (10 with a left hemisphere lesion and 14 with a right hemisphere lesion) and nine age-matched healthy controls. During the measurements, bipolar GVS (1.5 mA) was applied over the bilateral mastoid processes in three stimulation conditions: contralesional-anodal and ipsilesional-cathodal vestibular stimulation, ipsilesional-anodal and contralesional-cathodal vestibular stimulation, and no stimulation. To examine whether GVS modulates visual verticality and standing posture, SVV and weight-bearing in the three conditions were analyzed.Results: During no stimulation, the SVV deviated to the contralesional side in patients with a right hemisphere lesion, while more weight-bearing was observed on the ipsilesional limb than on the contralesional limb in both patient groups than in the controls. The SVV was modulated by reversing the polarity of GVS in all the groups when the cathodal stimulus side was either ipsilateral or contralateral to the lesion while the ipsilesional-cathodal vestibular stimulation reduced weight-bearing asymmetry in only the patients with a right hemisphere lesion.Conclusions: These findings demonstrate that the effects of GVS on the SVV and standing posture differ depending on the polarity of GVS and the hemispheric lesion side. Patients with a right hemisphere lesion have difficulty maintaining their preferred standing posture under visual verticality modulation evoked by GVS. The application of GVS may clarify whether the vestibular system has neural redundancy after stroke to suppress any effects of the stimulation, including modulation of the visual verticality, on balance.


2008 ◽  
Vol 104 (1) ◽  
pp. 34-40 ◽  
Author(s):  
Chikara Abe ◽  
Kunihiko Tanaka ◽  
Chihiro Awazu ◽  
Hironobu Morita

Galvanic vestibular stimulation (GVS) is known to create an imbalance in the vestibular inputs; thus it is possible that the simultaneously applied GVS obscures adequate gravity-based inputs to the vestibular organs or modifies an input-output relationship of the vestibular system and then impairs the vestibular-mediated response. To examine this, arterial pressure (AP) response to gravitational change was examined in conscious rats with and without GVS. Free drop-induced microgravity and centrifugation-induced hypergravity were employed to elicit vestibular-mediated AP response. GVS itself induced pressor response in an intensity-dependent manner. This pressor response was completely abolished by vestibular lesion, suggesting that the GVS-induced response was mediated by the vestibular system. The pressor response to microgravity (35 ± 3 mmHg) was significantly reduced by simultaneously applied GVS (19 ± 1 mmHg), and pressor response to 3-G load was also significantly reduced by GVS. However, GVS had no effect on air jet-induced pressor response. The effects of GVS on pressor response to gravitational change were qualitatively and quantitatively similar to that caused by the vestibular lesion, effects of which were demonstrated in our previous studies (Gotoh TM, Fujiki N, Matsuda T, Gao S, Morita H. Am J Physiol Regul Integr Comp Physiol 286: R25–R30, 2004; Matsuda T, Gotoh TM, Tanaka K, Gao S, Morita H. Brain Res 1028: 140–147, 2004; Tanaka K, Gotoh TM, Awazu C, Morita H. Neurosci Lett 397: 40–43, 2006). These results indicate that GVS reduced the vestibular-mediated pressor response to gravitational change but has no effect on the non-vestibular-mediated pressor response. Thus GVS might be employed for the acute interruption of the AP response to gravitational change.


1998 ◽  
Vol 80 (5) ◽  
pp. 2699-2709 ◽  
Author(s):  
Elie Lobel ◽  
Justus F. Kleine ◽  
Denis Le Bihan ◽  
Anne Leroy-Willig ◽  
Alain Berthoz

Lobel, Elie, Justus F. Kleine, Denis Le Bihan, Anne Leroy-Willig A, and Alain Berthoz. Functional MRI of galvanic vestibular stimulation. J. Neurophysiol. 80: 2699–2709, 1998. The cortical processing of vestibular information is not hierarchically organized as the processing of signals in the visual and auditory modalities. Anatomic and electrophysiological studies in the monkey revealed the existence of multiple interconnected areas in which vestibular signals converge with visual and/or somatosensory inputs. Although recent functional imaging studies using caloric vestibular stimulation (CVS) suggest that vestibular signals in the human cerebral cortex may be similarly distributed, some areas that apparently form essential constituents of the monkey cortical vestibular system have not yet been identified in humans. Galvanic vestibular stimulation (GVS) has been used for almost 200 years for the exploration of the vestibular system. By contrast with CVS, which mediates its effects mainly via the semicircular canals (SCC), GVS has been shown to act equally on SCC and otolith afferents. Because galvanic stimuli can be controlled precisely, GVS is suited ideally for the investigation of the vestibular cortex by means of functional imaging techniques. We studied the brain areas activated by sinusoidal GVS using functional magnetic resonance imaging (fMRI). An adapted set-up including LC filters tuned for resonance at the Larmor frequency protected the volunteers against burns through radio-frequency pickup by the stimulation electrodes. Control experiments ensured that potentially harmful effects or degradation of the functional images did not occur. Six male, right-handed volunteers participated in the study. In all of them, GVS induced clear perceptions of body movement and moderate cutaneous sensations at the electrode sites. Comparison with anatomic data on the primate cortical vestibular system and with imaging studies using somatosensory stimulation indicated that most activation foci could be related to the vestibular component of the stimulus. Activation appeared in the region of the temporo-parietal junction, the central sulcus, and the intraparietal sulcus. These areas may be analogous to areas PIVC, 3aV, and 2v, respectively, which form in the monkey brain, the “inner vestibular circle”. Activation also occurred in premotor regions of the frontal lobe. Although undetected in previous imaging-studies using CVS, involvement of these areas could be predicted from anatomic data showing projections from the anterior ventral part of area 6 to the inner vestibular circle and the vestibular nuclei. Using a simple paradigm, we showed that GVS can be implemented safely in the fMRI environment. Manipulating stimulus waveforms and thus the GVS-induced subjective vestibular sensations in future imaging studies may yield further insights into the cortical processing of vestibular signals.


2016 ◽  
Vol 115 (5) ◽  
pp. 2529-2535 ◽  
Author(s):  
T. P. Knellwolf ◽  
E. Hammam ◽  
V. G. Macefield

It has been shown that sinusoidal galvanic vestibular stimulation (sGVS) has no effect on the firing of spontaneously active muscle spindles in either relaxed or voluntarily contracting human leg muscles. However, all previous studies have been conducted on subjects in a seated position. Given that independent vestibular control of muscle spindle firing would be more valuable during postural threat, we tested the hypothesis that this modulation would become apparent for subjects in a near-vertical position. Unitary recordings were made from 18 muscle spindle afferents via tungsten microelectrodes inserted percutaneously into the common peroneal nerve of awake human subjects laying supine on a motorized tilt table. All recorded spindle afferents were spontaneously active at rest, and each increased its firing rate during a weak static contraction. Sinusoidal bipolar binaural galvanic vestibular stimulation (±2 mA, 100 cycles) was applied to the mastoid processes at 0.8 Hz. This continuous stimulation produced a sustained illusion of “rocking in a boat” or “swinging in a hammock.” The subject was then moved into a near-vertical position (75°), and the stimulation repeated. Despite robust vestibular illusions, none of the fusimotor-driven spindles exhibited phase-locked modulation of firing during sinusoidal GVS in either position. We conclude that this dynamic vestibular stimulus was insufficient to modulate the firing of fusimotor neurons in the near-vertical position. However, this does not mean that the vestibular system cannot modulate the sensitivity of muscle spindles via fusimotor neurons in free unsupported standing, when reliance on proprioceptive feedback is higher.


2001 ◽  
Vol 86 (2) ◽  
pp. 575-585 ◽  
Author(s):  
F. B. Horak ◽  
F. Hlavacka

To determine whether subjects with somatosensory loss show a compensatory increase in sensitivity to vestibular stimulation, we compared the amplitude of postural lean in response to four different intensities of bipolar galvanic stimulation in subjects with diabetic peripheral neuropathy (PNP) and age-matched control subjects. To determine whether healthy and neuropathic subjects show similar increases in sensitivity to galvanic vestibular stimulation when standing on unstable surfaces, both groups were exposed to galvanic stimulation while standing on a compliant foam surface. In these experiments, a 3-s pulse of galvanic current was administered to subjects standing with eyes closed and their heads turned toward one shoulder (anodal current on the forward mastoid). Anterior body tilt, as measured by center of foot pressure (CoP), increased proportionately with increasing galvanic vestibular stimulation intensity for all subjects. Subjects with peripheral neuropathy showed larger forward CoP displacement in response to galvanic stimulation than control subjects. The largest differences between neuropathy and control subjects were at the highest galvanic intensities, indicating an increased sensitivity to vestibular stimulation. Neuropathy subjects showed a larger increase in sensitivity to vestibular stimulation when standing on compliant foam than control subjects. The effect of galvanic stimulation was larger on the movement of the trunk segment in space than on the body's center of mass (CoM) angle, suggesting that the vestibular system acts to control trunk orientation rather than to control whole body posture. This study provides evidence for an increase in the sensitivity of the postural control system to vestibular stimulation when somatosensory information from the surface is disrupted either by peripheral neuropathy or by standing on an unstable surface. Simulations from a simple model of postural orientation incorporating feedback from the vestibular and somatosensory systems suggest that the increase in body lean in response to galvanic current in subjects with neuropathy could be reproduced only if central vestibular gain was increased when peripheral somatosensory gain was decreased. The larger effects of galvanic vestibular stimulation on the trunk than on the body's CoM suggest that the vestibular system may act to control postural orientation via control of the trunk in space.


Sign in / Sign up

Export Citation Format

Share Document