scholarly journals Bio-based polyurethane nanocomposite thin coatings from two comparable POSS with eight same vertex groups for controlled release urea

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lixia Li ◽  
Meng Wang ◽  
Xiandong Wu ◽  
Wenping Yi ◽  
Qiang Xiao

AbstractNanocomposite modification has attracted much attention in improving properties of bio-based polymer coating material for coated fertilizer. Herein two comparable polyhedral oligomeric silsesquioxanes (POSS), with eight poly(ethylene glycol) (PEG) and octaphenyl groups attached to the cage, respectively, were successfully incorporated into thin castor oil-based polyurethane coatings via in-situ polymerization on the urea surface. The nanostructure coatings are environmentally friendly, easy to prepare, and property-tunable. The results show that the vertex group of POSS had a pronounced influence on dispersion level and interaction between polyurethane and POSS that well-tuned the release pattern and period of coated urea, even at the coating rate as low as of 2 wt%. The liquid POSS with long and flexible PEG groups had better compatibility and dispersibility in polyurethane matrix than the solid POSS with rigid octaphenyl groups, as evidenced by SEM/EDS. The unique properties were resulted from the different extents of physical crosslinkings. This modification of bio-based polyurethane coating with POSS provided an alternative method of regulating and controlling the properties of coated fertilizer.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 605
Author(s):  
Marie-Emérentienne Cagnon ◽  
Silvio Curia ◽  
Juliette Serindoux ◽  
Jean-Manuel Cros ◽  
Feifei Ng ◽  
...  

This article describes the utilization of (methoxy)poly(ethylene glycol)-b-poly(1,3-trimethylene carbonate) ((m)PEG–PTMC) diblock and triblock copolymers for the formulation of in situ forming depot long-acting injectables by solvent exchange. The results shown in this manuscript demonstrate that it is possible to achieve long-term drug deliveries from suspension formulations prepared with these copolymers, with release durations up to several months in vitro. The utilization of copolymers with different PEG and PTMC molecular weights affords to modulate the release profile and duration. A pharmacokinetic study in rats with meloxicam confirmed the feasibility of achieving at least 28 days of sustained delivery by using this technology while showing good local tolerability in the subcutaneous environment. The characterization of the depots at the end of the in vivo study suggests that the rapid phase exchange upon administration and the surface erosion of the resulting depots are driving the delivery kinetics from suspension formulations. Due to the widely accepted utilization of meloxicam as an analgesic drug for animal care, the results shown in this article are of special interest for the development of veterinary products aiming at a very long-term sustained delivery of this therapeutic molecule.


2014 ◽  
Vol 16 (4) ◽  
pp. 45-50 ◽  
Author(s):  
Sandra Paszkiewicz ◽  
Małgorzata Nachman ◽  
Anna Szymczyk ◽  
Zdeno Špitalský ◽  
Jaroslav Mosnáček ◽  
...  

Abstract This work is the continuation and refinement of already published communications based on PET/EG nanocomposites prepared by in situ polymerization1, 2. In this study, nanocomposites based on poly(ethylene terephthalate) with expanded graphite were compared to those with functionalized graphite sheets (GO). The results suggest that the degree of dispersion of nanoparticles in the PET matrix has important effect on the structure and physical properties of the nanocomposites. The existence of graphene sheets nanoparticles enhances the crystallization rate of PET. It has been confirmed that in situ polymerization is the effective method for preparation nanocomposites which can avoid the agglomeration of nanoparticles in polymer matrices and improve the interfacial interaction between nanofiller and polymer matrix. The obtained results have shown also that due to the presence of functional groups on GO surface the interactions with PET matrix can be stronger than in the case of exfoliated graphene (EG) and matrix.


2020 ◽  
Vol 56 (7) ◽  
pp. 4485-4499
Author(s):  
Peter T. M. Albers ◽  
Jozua Laven ◽  
Leendert G. J. van der Ven ◽  
Rolf A. T. M. van Benthem ◽  
Gijsbertus de With ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document