scholarly journals A covered eye fails to follow an object moving in depth

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Arvind Chandna ◽  
Jeremy Badler ◽  
Devashish Singh ◽  
Scott Watamaniuk ◽  
Stephen Heinen

AbstractTo clearly view approaching objects, the eyes rotate inward (vergence), and the intraocular lenses focus (accommodation). Current ocular control models assume both eyes are driven by unitary vergence and unitary accommodation commands that causally interact. The models typically describe discrete gaze shifts to non-accommodative targets performed under laboratory conditions. We probe these unitary signals using a physical stimulus moving in depth on the midline while recording vergence and accommodation simultaneously from both eyes in normal observers. Using monocular viewing, retinal disparity is removed, leaving only monocular cues for interpreting the object’s motion in depth. The viewing eye always followed the target’s motion. However, the occluded eye did not follow the target, and surprisingly, rotated out of phase with it. In contrast, accommodation in both eyes was synchronized with the target under monocular viewing. The results challenge existing unitary vergence command theories, and causal accommodation-vergence linkage.

Perception ◽  
1996 ◽  
Vol 25 (1_suppl) ◽  
pp. 152-152
Author(s):  
K Susami ◽  
H Kaneko ◽  
H Ashida

While an object is moving in depth, its retinal disparity and size are cooperatively changing along the viewing distance. We examined the effect of a cooperative relation between the two cues for the perception of motion in depth—changes in disparity and size—with the Wheatstone stereoscopic display. In experiment 1, we used a stereoscopic stimulus whose disparity and size were independently modulated with sine-wave form, but at different frequencies (0.7 Hz vs 0.8 Hz, and vice versa). So, the cooperative and the uncooperative phases between the two cues repeatedly followed each other. The subjects continuously pushed a response key when the stimulus was clearly perceived to be moving in depth. In general, the impression of motion in depth was clear when the two cues were simultaneously modulated in similar phase, but not in different phase. In experiment 2, we measured the perceived distance of a stimulus that is moving in depth, when the two cues were moderated in the same phase and in counterphases. The perceived distance was increased when the two cues moved in the same phase. We found that not only the effect of each cue, but also the effect of the cooperative change of the two cues was affecting the perception of motion in depth. These results suggest that the cooperative interaction of two cues, that is their relative phase, is important for the perception of motion in depth.


1999 ◽  
Vol 82 (2) ◽  
pp. 551-563 ◽  
Author(s):  
Richard F. Lewis ◽  
David S. Zee ◽  
Herschel P. Goldstein ◽  
Barton L. Guthrie

Drift of the eyes after saccades produces motion of images on the retina (retinal slip) that degrades visual acuity. In this study, we examined the contributions of proprioceptive and retinal afference to the suppression of postsaccadic drift induced by a unilateral ocular muscle paresis. Eye movements were recorded in three rhesus monkeys with a unilateral weakness of one vertical extraocular muscle before and after proprioceptive deafferentation of the paretic eye. Postsaccadic drift was examined in four visual states: monocular viewing with the normal eye (4-wk period); binocular viewing (2-wk period); binocular viewing with a disparity-reducing prism (2-wk period); and monocular viewing with the paretic eye (2-wk period). The muscle paresis produced vertical postsaccadic drift in the paretic eye, and this drift was suppressed in the binocular viewing condition even when the animals could not fuse. When the animals viewed binocularly with a disparity-reducing prism, the drift in the paretic eye was suppressed in two monkeys (with superior oblique pareses) but generally was enhanced in one animal (with a tenotomy of the inferior rectus). When drift movements were enhanced, they reduced the retinal disparity that was present at the end of the saccade. In the paretic-eye–viewing condition, postsaccadic drift was suppressed in the paretic eye and was induced in the normal eye. After deafferentation in the normal-eye–viewing state, there was a change in the vertical postsaccadic drift of the paretic eye. This change in drift was idiosyncratic and variably affected the amplitude and velocity of the postsaccadic drift movements of the paretic eye. Deafferentation of the paretic eye did not affect the postsaccadic drift of the normal eye nor did it impair visually mediated adaptation of postsaccadic drift. The results demonstrate several new findings concerning the roles of visual and proprioceptive afference in the control of postsaccadic drift: disconjugate adaptation of postsaccadic drift does not require binocular fusion; slow, postsaccadic drift movements that reduce retinal disparity but concurrently increase retinal slip can be induced in the binocular viewing state; postsaccadic drift is modified by proprioception from the extraocular muscles, but these modifications do not serve to minimize retinal slip or to correct errors in saccade amplitude; and visually mediated adaptation of postsaccadic drift does not require proprioceptive afference from the paretic eye.


2019 ◽  
Author(s):  
Marc M. Himmelberg ◽  
Federico G. Segala ◽  
Ryan T. Maloney ◽  
Julie M. Harris ◽  
Alex R. Wade

AbstractTwo stereoscopic cues that underlie the perception of motion-in-depth (MID) are changes in retinal disparity over time (CD) and interocular velocity differences (IOVD). These cues have independent spatiotemporal sensitivity profiles, depend upon different low-level stimulus properties, and are potentially processed along separate cortical pathways. Here, we ask whether these MID cues code for different motion directions: do they give rise to discriminable patterns of neural signals, and is there evidence for their convergence onto a single ‘motion-in-depth’ pathway? To answer this, we use a decoding algorithm to test whether, and when, patterns of electroencephalogram (EEG) signals measured from across the full scalp, generated in response to CD- and IOVD-isolating stimuli moving towards or away in depth can be distinguished. We find that both MID cue type and 3D-motion direction can be decoded at different points in the EEG timecourse and that direction decoding cannot be accounted for by static disparity information. Remarkably, we find evidence for late processing convergence: IOVD motion direction can be decoded relatively late in the timecourse based on a decoder trained on CD stimuli, and vice versa. We conclude that early CD and IOVD direction decoding performance is dependent upon fundamentally different low-level stimulus features, but that later stages of decoding performance may be driven by a central, shared pathway that is agnostic to these features. Overall, these data are the first to show that neural responses to CD and IOVD cues that move towards and away in depth can be decoded from EEG signals, and that different aspects of MID-cues contribute to decoding performance at different points along the EEG timecourse.


Perception ◽  
1982 ◽  
Vol 11 (6) ◽  
pp. 733-741 ◽  
Author(s):  
David Finlay

Temporal limits of stroboscopic apparent motion in depth have been examined. For monocular viewing the limits are similar to those obtained for motion in the frontal plane, while those for binocular viewing are greatly narrowed. In another experiment the contraction in space over which apparent movement occurs was measured. The results are discussed in terms of a filter representation proposed by Caelli and Finlay.


2020 ◽  
Vol 14 ◽  
Author(s):  
Marc M. Himmelberg ◽  
Federico G. Segala ◽  
Ryan T. Maloney ◽  
Julie M. Harris ◽  
Alex R. Wade

Two stereoscopic cues that underlie the perception of motion-in-depth (MID) are changes in retinal disparity over time (CD) and interocular velocity differences (IOVD). These cues have independent spatiotemporal sensitivity profiles, depend upon different low-level stimulus properties, and are potentially processed along separate cortical pathways. Here, we ask whether these MID cues code for different motion directions: do they give rise to discriminable patterns of neural signals, and is there evidence for their convergence onto a single “motion-in-depth” pathway? To answer this, we use a decoding algorithm to test whether, and when, patterns of electroencephalogram (EEG) signals measured from across the full scalp, generated in response to CD- and IOVD-isolating stimuli moving toward or away in depth can be distinguished. We find that both MID cue type and 3D-motion direction can be decoded at different points in the EEG timecourse and that direction decoding cannot be accounted for by static disparity information. Remarkably, we find evidence for late processing convergence: IOVD motion direction can be decoded relatively late in the timecourse based on a decoder trained on CD stimuli, and vice versa. We conclude that early CD and IOVD direction decoding performance is dependent upon fundamentally different low-level stimulus features, but that later stages of decoding performance may be driven by a central, shared pathway that is agnostic to these features. Overall, these data are the first to show that neural responses to CD and IOVD cues that move toward and away in depth can be decoded from EEG signals, and that different aspects of MID-cues contribute to decoding performance at different points along the EEG timecourse.


1988 ◽  
Author(s):  
Marian W. Fischman ◽  
Richard W. Foltin ◽  
Joseph V. Brady

TAPPI Journal ◽  
2019 ◽  
Vol 18 (11) ◽  
pp. 631-638
Author(s):  
FREDERIC KREPLIN ◽  
HANS-JOACHIM PUTZ ◽  
SAMUEL SCHABEL

Paper for recycling is an important fiber source for the production of corrugated base paper. The change in production capacity toward more and more packaging papers affects the composition of paper for recycling and influences the paper quality. This research project investigated the influence of the multiple recycling of five different corrugated base papers (kraftliner, neutral sulfite semichemical [NSSC] fluting, corrugating medium, testliner 2, and testliner 3) on suspension and strength properties under laboratory conditions. The corrugated board base papers were repulped in a low consistency pulper and processed into Rapid-Köthen laboratory sheets. The sheets were then recycled up to 15 times in the same process. In each cycle, the suspension and the paper properties were recorded. In particular, the focus was on corrugated board-specific parameters, such as short-span compression test, ring crush test, corrugating medium test, and burst. The study results indicate how multiple recycling under laboratory conditions affects fiber and paper properties.


Sign in / Sign up

Export Citation Format

Share Document