scholarly journals Development of a yeast cell surface display method using the SpyTag/SpyCatcher system

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaho Kajiwara ◽  
Wataru Aoki ◽  
Naoki Koike ◽  
Mitsuyoshi Ueda

AbstractYeast cell surface display (YSD) has been used to engineer various proteins, including antibodies. Directed evolution, which subjects a gene to iterative rounds of mutagenesis, selection and amplification, is useful for protein engineering. In vivo continuous mutagenesis, which continuously diversifies target genes in the host cell, is a promising tool for accelerating directed evolution. However, combining in vivo continuous evolution and YSD is difficult because mutations in the gene encoding the anchor proteins may inhibit the display of target proteins on the cell surface. In this study, we have developed a modified YSD method that utilises SpyTag/SpyCatcher-based in vivo protein ligation. A nanobody fused with a SpyTag of 16 amino acids and an anchor protein fused with a SpyCatcher of 113 amino acids are encoded by separate gene cassettes and then assembled via isopeptide bond formation. This system achieved a high display efficiency of more than 90%, no intercellular protein ligation events, and the enrichment of target cells by cell sorting. These results suggested that our system demonstrates comparable performance with conventional YSD methods; therefore, it can be an appropriate platform to be integrated with in vivo continuous evolution.

2012 ◽  
Vol 29 ◽  
pp. S48
Author(s):  
Kouichi Kuroda ◽  
Miki Ota ◽  
Hironobu Morisaka ◽  
Hideo Miyake ◽  
Yutaka Tamaru ◽  
...  

2006 ◽  
Vol 72 (11) ◽  
pp. 7140-7147 ◽  
Author(s):  
Frank Breinig ◽  
Björn Diehl ◽  
Sabrina Rau ◽  
Christian Zimmer ◽  
Helmut Schwab ◽  
...  

ABSTRACT Yeast cell surface display is a powerful tool for expression and immobilization of biocatalytically active proteins on a unicellular eukaryote. Here bacterial carboxylesterase EstA from Burkholderia gladioli was covalently anchored into the cell wall of Saccharomyces cerevisiae by in-frame fusion to the endogenous yeast proteins Kre1p, Cwp2p, and Flo1p. When p-nitrophenyl acetate was used as a substrate, the esterase specific activities of yeast expressing the protein fusions were 103 mU mg−1 protein for Kre1/EstA/Cwp2p and 72 mU mg−1 protein for Kre1/EstA/Flo1p. In vivo cell wall targeting was confirmed by esterase solubilization after laminarinase treatment and immunofluorescence microscopy. EstA expression resulted in cell wall-associated esterase activities of 2.72 U mg−1 protein for Kre1/EstA/Cwp2p and 1.27 U mg−1 protein for Kre1/EstA/Flo1p. Furthermore, esterase display on the yeast cell surface enabled the cells to effectively grow on the esterase-dependent carbon source glycerol triacetate (Triacetin). In the case of Kre1/EstA/Flo1p, in vivo maturation within the yeast secretory pathway and final incorporation into the wall were further enhanced when there was constitutive activation of the unfolded protein response pathway. Our results demonstrate that esterase cell surface display in yeast, which, as shown here, is remarkably more effective than EstA surface display in Escherichia coli, can be further optimized by activating the protein folding machinery in the eukaryotic secretion pathway.


ChemBioChem ◽  
2013 ◽  
Vol 14 (4) ◽  
pp. 426-430 ◽  
Author(s):  
Keya Zhang ◽  
Heng Li ◽  
Karan Bhuripanyo ◽  
Bo Zhao ◽  
Tiffany F. Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document