scholarly journals S100A9/CD163 expression profiles in classical monocytes as biomarkers to discriminate idiopathic pulmonary fibrosis from idiopathic nonspecific interstitial pneumonia

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masahiro Yamashita ◽  
Yuh Utsumi ◽  
Hiromi Nagashima ◽  
Hiroo Nitanai ◽  
Kohei Yamauchi

AbstractCirculating monocytes have pathogenic relevance in idiopathic pulmonary fibrosis (IPF). Here, we determined whether the cell surface levels of two markers, pro-inflammatory-related S100A9 and anti-inflammatory-related CD163, expressed on CD14strongCD16− classical monocytes by flow cytometry could discriminate IPF from idiopathic nonspecific interstitial pneumonia (iNSIP). Twenty-five patients with IPF, 25 with iNSIP, and 20 healthy volunteers were prospectively enrolled in this study. The S100A9+CD163− cell percentages in classical monocytes showed a pronounced decrease on monocytes in iNSIP compared to that in IPF. In contrast, the percentages of S100A9−CD163+ cells were significantly higher in iNSIP patients than in IPF patients and healthy volunteers. In IPF patients, there was a trend toward a correlation between the percentage of S100A9+CD163− monocytes and the surfactant protein-D (SP-D) serum levels (r = 0.4158, [95% confidence interval (CI) − 0.02042–0.7191], p = 0.051). The individual percentages of S100A9+CD163− and S100A9−CD163+ cells were also independently associated with IPF through multivariate regression analysis. The unadjusted area under the receiver operating characteristic curve (ROC-AUC) to discriminate IPF from iNSIP was (ROC-AUC 0.802, 95% CI [0.687–0.928]), suggesting that these are better biomarkers than serum SP-D (p < 0.05). This preliminary study reports the first comparative characterization of monocyte phenotypes between IPF and iNSIP.

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Tetsuya Hanaka ◽  
Takashi Kido ◽  
Shingo Noguchi ◽  
Sohsuke Yamada ◽  
Hirotsugu Noguchi ◽  
...  

Abstract Background Acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) is life-threatening. Several serum biomarkers, such as Krebs von den Lungen-6 (KL-6) and surfactant protein D (SP-D), are clinically used for evaluating AE-IPF, but these biomarkers are not adequate for establishing an early and accurate diagnosis of AE-IPF. Recently, the protective roles of the members of the peroxiredoxin (PRDX) family have been reported in IPF; however, the role of PRDX4 in AE-IPF is unclear. Methods Serum levels of PRDX4 protein, KL-6, SP-D and lactate dehydrogenase (LDH) in 51 patients with stable IPF (S-IPF), 38 patients with AE-IPF and 15 healthy volunteers were retrospectively assessed using enzyme-linked immunosorbent assay. Moreover, as an animal model of pulmonary fibrosis, wild-type (WT) and PRDX4-transgenic (Tg) mice were intratracheally administered with bleomycin (BLM, 2 mg/kg), and fibrotic and inflammatory changes in lungs were evaluated 3 weeks after the intratracheal administration. Results Serum levels of PRDX4 protein, KL-6, SP-D and LDH in patients with S-IPF and AE-IPF were significantly higher than those in healthy volunteers, and those in AE-IPF patients were the highest among the three groups. Using receiver operating characteristic curves, area under the curve values of serum PRDX4 protein, KL-6, SP-D, and LDH for detecting AE-IPF were 0.873, 0.698, 0.675, and 0.906, respectively. BLM-treated Tg mice demonstrated aggravated histopathological findings and poor prognosis compared with BLM-treated WT mice. Moreover, PRDX4 expression was observed in alveolar macrophages and lung epithelial cells of BLM-treated Tg mice. Conclusions PRDX4 is associated with the aggravation of inflammatory changes and fibrosis in the pathogenesis of IPF, and serum PRDX4 may be useful in clinical practice of IPF patients.


Sign in / Sign up

Export Citation Format

Share Document