scholarly journals Polymetallic nodules are essential for food-web integrity of a prospective deep-seabed mining area in Pacific abyssal plains

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tanja Stratmann ◽  
Karline Soetaert ◽  
Daniel Kersken ◽  
Dick van Oevelen

AbstractPolymetallic nodule fields provide hard substrate for sessile organisms on the abyssal seafloor between 3000 and 6000 m water depth. Deep-seabed mining targets these mineral-rich nodules and will likely modify the consumer-resource (trophic) and substrate-providing (non-trophic) interactions within the abyssal food web. However, the importance of nodules and their associated sessile fauna in supporting food-web integrity remains unclear. Here, we use seafloor imagery and published literature to develop highly-resolved trophic and non-trophic interaction webs for the Clarion-Clipperton Fracture Zone (CCZ, central Pacific Ocean) and the Peru Basin (PB, South-East Pacific Ocean) and to assess how nodule removal may modify these networks. The CCZ interaction web included 1028 compartments connected with 59,793 links and the PB interaction web consisted of 342 compartments and 8044 links. We show that knock-down effects of nodule removal resulted in a 17.9% (CCZ) to 20.8% (PB) loss of all taxa and 22.8% (PB) to 30.6% (CCZ) loss of network links. Subsequent analysis identified stalked glass sponges living attached to the nodules as key structural species that supported a high diversity of associated fauna. We conclude that polymetallic nodules are critical for food-web integrity and that their absence will likely result in reduced local benthic biodiversity.

2021 ◽  
Author(s):  
Tanja Stratmann ◽  
Karline Soetaert ◽  
Daniel Kersken ◽  
Dick van Oevelen

AbstractPolymetallic nodule fields provide hard substrate for sessile organisms on the abyssal seafloor between 3,000 and 6,000 m water depth. Deep-seabed mining targets these mineral-rich nodules and will likely modify the consumer-resource (trophic) and substrate-providing (non-trophic) interactions within the abyssal food web. However, the importance of nodules and their associated sessile fauna in supporting food-web integrity remains unclear. Here, we use seafloor imagery and published literature to develop highly-resolved trophic and non-trophic interaction webs for the Clarion-Clipperton Fracture Zone (CCZ, central Pacific Ocean) and the Peru Basin (PB, south-east Pacific Ocean) and to assess how nodule removal will modify these networks. The CCZ interaction web included 1,028 compartments connected with 59,793 links and the PB interaction web consisted of 342 compartments and 8,044 links. We show that knock-down effects of nodule removal resulted in a 17.9% (CCZ) to 20.8% (PB) loss of all compartments and 22.8% (PB) to 30.6% (CCZ) loss of network links. Subsequent analysis identified stalked glass sponges living attached to the nodules as key structural species that supported a high diversity of associated fauna. We conclude that polymetallic nodules are critical for food-web integrity and that their absence will likely result in reduced local benthic biodiversity.


ZooKeys ◽  
2019 ◽  
Vol 883 ◽  
pp. 1-82 ◽  
Author(s):  
Helena Wiklund ◽  
Lenka Neal ◽  
Adrian G. Glover ◽  
Regan Drennan ◽  
Muriel Rabone ◽  
...  

We present DNA taxonomy of abyssal polychaete worms from the eastern Clarion-Clipperton Zone (CCZ), central Pacific Ocean, using material collected as part of the Abyssal Baseline (ABYSSLINE) environmental survey cruises ‘AB01’ and ‘AB02’ to the UK Seabed Resources Ltd (UKSRL) polymetallic nodule exploration contract area ‘UK-1’, the Ocean Mineral Singapore exploration contract area ‘OMS-1’ and an Area of Particular Environmental Interest, ‘APEI-6’. This is the fourth paper in a series to provide regional taxonomic data with previous papers reporting on Cnidaria, Echinodermata and Mollusca. Taxonomic data are presented for 23 species from 85 records within four polychaete families: Capitellidae, Opheliidae, Scalibregmatidae and Travisiidae, identified by a combination of morphological and genetic data, including molecular phylogenetic analyses. Two taxa (genetically separated from one another) morphologically matched the same known cosmopolitan species,Ophelina abranchiatathat has a type locality in a different ocean basin and depth from where no genetic data was available. These two species were assigned the open nomenclature ‘cf.’ as a precautionary approach in taxon assignments to avoid over-estimating species ranges. Twelve (12) taxa are here described as new species,Ammotrypanella keenanisp. nov.,Ammotrypanella kerstenisp. nov.,Ophelina curlisp. nov.,Ophelina ganaesp. nov.,Ophelina juhazisp. nov.,Ophelina martinezarbizuisp. nov.,Ophelina meyeraesp. nov.,Ophelina nunnallyisp. nov.,Oligobregma brasieraesp. nov.,Oligobregma tanisp. nov.,Oligobregma whaleyisp. nov.andTravisia ziegleraesp. nov.For the remaining nine taxa, we have determined them to be potentially new species, for which we make the raw data, imagery and vouchers available for future taxonomic study. The CCZ is a region undergoing intense exploration for potential deep-sea mineral extraction from polymetallic nodules. We present these data to facilitate future taxonomic and environmental impact study by making both data and voucher materials available through curated and accessible biological collections.


2016 ◽  
Vol 4 ◽  
pp. e7251 ◽  
Author(s):  
Thomas Dahlgren ◽  
Adrian Glover ◽  
Helena Wiklund ◽  
Muriel Rabone ◽  
Diva Amon ◽  
...  

2016 ◽  
Vol 4 ◽  
pp. e9277 ◽  
Author(s):  
Thomas Dahlgren ◽  
Helena Wiklund ◽  
Muriel Rabone ◽  
Diva Amon ◽  
Chiho Ikebe ◽  
...  

2021 ◽  
Author(s):  
Ellen Pape ◽  
Tania Bezerra ◽  
Hendrik Gheerardyn ◽  
Marius Buydens ◽  
Amanda Kieswetter ◽  
...  

Abstract Deep seabed mining is imminent in the Clarion Clipperton Fracture Zone (CCFZ; northeast Pacific). Seabed collectors will remove the polymetallic nodules and the surrounding surface sediments, both inhabited by meiobenthos, along their path. To determine potential impacts of polymetallic nodule removal, we investigated the importance of nodule presence for sediment abundance, composition and diversity of meiobenthos, nematodes and copepods, and evaluated the existence and composition of nodule crevice meiobenthos in the Global Sea Mineral Resources (GSR) exploration contract area. Nodule-free and nodule-rich sediments displayed high biodiversity with many singletons and doubletons, potentially representing rare taxa. Nodule presence negatively influenced sediment meiobenthic abundances but did not markedly affect community composition or diversity. This is the first report on CCFZ nodule crevice meiobenthos, whose abundance related positively to nodule dimensions. Though dominated by the same taxa, the meio- and nematofauna differed between sediments and nodules regarding community and functional composition. Nevertheless, there were no taxa endemic to the nodule crevices and nodule crevice meiobenthos added only little to total small-scale (~ cm) meiobenthic abundance and diversity. We formulated environmental management recommendations at the contract area and regional (CCFZ) scale related to sampling effort, set-aside preservation and monitoring areas, and potential rehabilitation measures.


1997 ◽  
Vol 42 (23) ◽  
pp. 1980-1983 ◽  
Author(s):  
Li Yanhe ◽  
Song Hebin ◽  
Li Jincheng ◽  
Yao Xiaomei

2021 ◽  
Vol 760 ◽  
pp. 160-185
Author(s):  
Regan Drennan ◽  
Helena Wiklund ◽  
Muriel Rabone ◽  
Magdalena N. Georgieva ◽  
Thomas G. Dahlgren ◽  
...  

A new species of abyssal Neanthes Kinberg, 1865, N. goodayi sp. nov., is described from the Clarion-Clipperton Zone in the central Pacific Ocean, a region targeted for seabed mineral exploration for polymetallic nodules. It is a relatively large animal found living inside polymetallic nodules and in xenophyophores (giant Foraminifera) growing on nodules, highlighting the importance of the mineral resource itself as a distinct microhabitat. Neanthes goodayi sp. nov. can be distinguished from its congeners primarily by its distinctive, enlarged anterior pair of eyes in addition to characters of the head, pharynx and parapodia. Widespread, abundant, and easily recognisable, N. goodayi sp. nov. is also considered to be a suitable candidate as a potential indicator taxon for future monitoring of the impacts of seabed mining.


ZooKeys ◽  
2017 ◽  
Vol 707 ◽  
pp. 1-46 ◽  
Author(s):  
Helena Wiklund ◽  
John D. Taylor ◽  
Thomas G. Dahlgren ◽  
Christiane Todt ◽  
Chiho Ikebe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document