polymetallic nodules
Recently Published Documents


TOTAL DOCUMENTS

194
(FIVE YEARS 77)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
Vol 82 (3) ◽  
pp. 153-155
Author(s):  
Valcana Stoyanova ◽  
Atanas Hikov ◽  
Elitsa Stefanova ◽  
Zlatka Milakovska ◽  
Tomasz Abramowski ◽  
...  

The renewed importance of polymetallic nodules in the context of forecasted increasing demands for metals are discussed. Based on the Interoceanmetal Joint Organization’s (IOM) site-specific data obtained during the exploration activity in the Clarion-Clipperton Fracture Zone, a total of 272.5 Mt of nodules were estimated as economically reasonable for future mining for Ni, Cu, Co, and Mn. Additionally, data for REE and other critical elements in nodules as potential by-products are presented.


2021 ◽  
Vol 55 (6) ◽  
pp. 65-72
Author(s):  
Narayanmurthy Renganayahi Ramesh ◽  
Karuppiah Thirumurugan ◽  
Deepak Chullickal Raphael ◽  
Gidugu Ananda Ramadass ◽  
Malayath Aravindakshan Atmanand

Abstract Polymetallic nodules found in the deep oceans are viewed as potential resources for meeting the world's demand of many metals in the near future. Polymetallic nodule mining systems require subsea crushing systems for reducing the size of nodules to facilitate energy-efficient and safe pumping through risers of optimum size. Polymetallic nodules are friable, and deep-sea crushing has to be done with care to minimize the formation of fines, while obtaining the required size reduction. The crusher could also encounter objects with greater hardness during operation like small rocks, splinters, long fish bones, and shark teeth. All components in the crusher should be capable of operating in the deep ocean environment, which is hyperbaric and sediment laden. The equipment should be compact with minimum weight. Reversal of direction and dumping arrangements in the event of stalling are other essential design requirements. An underwater crusher capable of crushing mined nodules from a maximum size of 100 mm to a crushed size of 30 mm was developed using principles of design synthesis. The crusher was tested in land and integrated into a remotely operated crawler-based underwater mining machine that could mine and pump nodules through a flexible riser. The system was tested using artificial nodules at 512-m water depth off the Malvan coast in the Arabian Sea. This paper describes developmental methodology, land-based performance tests, and sea trials conducted on the developed crusher.


2021 ◽  
Vol 55 (6) ◽  
pp. 22-30
Author(s):  
Rahul Sharma

Abstract Deep-sea minerals such as polymetallic nodules have attracted significant interest among stakeholders not only for evaluating their potential as an alternative source of critical metals that are required for various industrial applications including green energy but also in developing technology for their exploitation. There has been a steady increase in the number of contractors having exploration rights over large tracts on the seafloor in the “Area,” and the International Seabed Authority that is mandated with the responsibility of regulating such activities is in the process of preparing a code for exploitation of these deep-sea minerals. This commentary takes a look at the resource potential and mining prospects of polymetallic nodules while addressing the economic and environmental issues associated with them.


2021 ◽  
Vol 55 (6) ◽  
pp. 16-21
Author(s):  
Laurence P. Madin

Abstract The widely recognized need for large-scale transition from fossil to renewable energy sources has led to renewed effort to obtain metals needed for battery-based electric transportation and other functions. A potential source of some of these metals is the deposits of polymetallic nodules on the deep seafloor. If mining of these deposits proceeds in the coming decade, the enterprise creates an opportunity for extensive, long-term oceanographic research in the mining locations. The need to monitor environmental effects of mining activity can best be met with a near-continuous presence of a research platform in the vicinity. The platform could be a ship or potentially a semi-submersible platform like those used in the offshore oil industry. Such a facility might be supported by a consortium of mining companies and also provide opportunities for academic research in ocean and climate science.


2021 ◽  
Author(s):  
Matthias Haeckel ◽  
Peter Linke

Cruise SO268 is fully integrated into the second phase of the European collaborative JPI-Oceans project MiningImpact and is designed to assess the environmental impacts of deep-sea mining of polymetallic nodules in the Clarion-Clipperton Fracture Zone (CCZ). In particular, the cruise aimed at conducting an independent scientific monitoring of the first industrial test of a pre-protoype nodule collector by the Belgian company DEME-GSR. The work includes collecting the required baseline data in the designated trial and reference sites in the Belgian and German contract areas, a quantification of the spatial and temporal spread of the produced sediment plume during the trials as well as a first assessment of the generated environmental impacts. However, during SO268 Leg 1 DEME-GSR informed us that the collector trials would not take place as scheduled due to unresolvable technical problems. Thus, we adjusted our work plan accordingly by implementing our backup plan. This involved conducting a small-scale sediment plume experiment with a small chain dredge to quantify the spatial and temporal dispersal of the suspended sediment particles, their concentration in the plume as well as the spatial footprint and thickness of the deposited sediment blanket on the seabed.


Sign in / Sign up

Export Citation Format

Share Document