scholarly journals Abyssal fauna of the UK-1 polymetallic nodule exploration area, Clarion-Clipperton Zone, central Pacific Ocean: Cnidaria

2016 ◽  
Vol 4 ◽  
pp. e9277 ◽  
Author(s):  
Thomas Dahlgren ◽  
Helena Wiklund ◽  
Muriel Rabone ◽  
Diva Amon ◽  
Chiho Ikebe ◽  
...  
ZooKeys ◽  
2017 ◽  
Vol 707 ◽  
pp. 1-46 ◽  
Author(s):  
Helena Wiklund ◽  
John D. Taylor ◽  
Thomas G. Dahlgren ◽  
Christiane Todt ◽  
Chiho Ikebe ◽  
...  

2016 ◽  
Vol 4 ◽  
pp. e7251 ◽  
Author(s):  
Thomas Dahlgren ◽  
Adrian Glover ◽  
Helena Wiklund ◽  
Muriel Rabone ◽  
Diva Amon ◽  
...  

ZooKeys ◽  
2019 ◽  
Vol 883 ◽  
pp. 1-82 ◽  
Author(s):  
Helena Wiklund ◽  
Lenka Neal ◽  
Adrian G. Glover ◽  
Regan Drennan ◽  
Muriel Rabone ◽  
...  

We present DNA taxonomy of abyssal polychaete worms from the eastern Clarion-Clipperton Zone (CCZ), central Pacific Ocean, using material collected as part of the Abyssal Baseline (ABYSSLINE) environmental survey cruises ‘AB01’ and ‘AB02’ to the UK Seabed Resources Ltd (UKSRL) polymetallic nodule exploration contract area ‘UK-1’, the Ocean Mineral Singapore exploration contract area ‘OMS-1’ and an Area of Particular Environmental Interest, ‘APEI-6’. This is the fourth paper in a series to provide regional taxonomic data with previous papers reporting on Cnidaria, Echinodermata and Mollusca. Taxonomic data are presented for 23 species from 85 records within four polychaete families: Capitellidae, Opheliidae, Scalibregmatidae and Travisiidae, identified by a combination of morphological and genetic data, including molecular phylogenetic analyses. Two taxa (genetically separated from one another) morphologically matched the same known cosmopolitan species,Ophelina abranchiatathat has a type locality in a different ocean basin and depth from where no genetic data was available. These two species were assigned the open nomenclature ‘cf.’ as a precautionary approach in taxon assignments to avoid over-estimating species ranges. Twelve (12) taxa are here described as new species,Ammotrypanella keenanisp. nov.,Ammotrypanella kerstenisp. nov.,Ophelina curlisp. nov.,Ophelina ganaesp. nov.,Ophelina juhazisp. nov.,Ophelina martinezarbizuisp. nov.,Ophelina meyeraesp. nov.,Ophelina nunnallyisp. nov.,Oligobregma brasieraesp. nov.,Oligobregma tanisp. nov.,Oligobregma whaleyisp. nov.andTravisia ziegleraesp. nov.For the remaining nine taxa, we have determined them to be potentially new species, for which we make the raw data, imagery and vouchers available for future taxonomic study. The CCZ is a region undergoing intense exploration for potential deep-sea mineral extraction from polymetallic nodules. We present these data to facilitate future taxonomic and environmental impact study by making both data and voucher materials available through curated and accessible biological collections.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tanja Stratmann ◽  
Karline Soetaert ◽  
Daniel Kersken ◽  
Dick van Oevelen

AbstractPolymetallic nodule fields provide hard substrate for sessile organisms on the abyssal seafloor between 3000 and 6000 m water depth. Deep-seabed mining targets these mineral-rich nodules and will likely modify the consumer-resource (trophic) and substrate-providing (non-trophic) interactions within the abyssal food web. However, the importance of nodules and their associated sessile fauna in supporting food-web integrity remains unclear. Here, we use seafloor imagery and published literature to develop highly-resolved trophic and non-trophic interaction webs for the Clarion-Clipperton Fracture Zone (CCZ, central Pacific Ocean) and the Peru Basin (PB, South-East Pacific Ocean) and to assess how nodule removal may modify these networks. The CCZ interaction web included 1028 compartments connected with 59,793 links and the PB interaction web consisted of 342 compartments and 8044 links. We show that knock-down effects of nodule removal resulted in a 17.9% (CCZ) to 20.8% (PB) loss of all taxa and 22.8% (PB) to 30.6% (CCZ) loss of network links. Subsequent analysis identified stalked glass sponges living attached to the nodules as key structural species that supported a high diversity of associated fauna. We conclude that polymetallic nodules are critical for food-web integrity and that their absence will likely result in reduced local benthic biodiversity.


2021 ◽  
Author(s):  
Tanja Stratmann ◽  
Karline Soetaert ◽  
Daniel Kersken ◽  
Dick van Oevelen

AbstractPolymetallic nodule fields provide hard substrate for sessile organisms on the abyssal seafloor between 3,000 and 6,000 m water depth. Deep-seabed mining targets these mineral-rich nodules and will likely modify the consumer-resource (trophic) and substrate-providing (non-trophic) interactions within the abyssal food web. However, the importance of nodules and their associated sessile fauna in supporting food-web integrity remains unclear. Here, we use seafloor imagery and published literature to develop highly-resolved trophic and non-trophic interaction webs for the Clarion-Clipperton Fracture Zone (CCZ, central Pacific Ocean) and the Peru Basin (PB, south-east Pacific Ocean) and to assess how nodule removal will modify these networks. The CCZ interaction web included 1,028 compartments connected with 59,793 links and the PB interaction web consisted of 342 compartments and 8,044 links. We show that knock-down effects of nodule removal resulted in a 17.9% (CCZ) to 20.8% (PB) loss of all compartments and 22.8% (PB) to 30.6% (CCZ) loss of network links. Subsequent analysis identified stalked glass sponges living attached to the nodules as key structural species that supported a high diversity of associated fauna. We conclude that polymetallic nodules are critical for food-web integrity and that their absence will likely result in reduced local benthic biodiversity.


Archaea ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Franziska Wemheuer ◽  
Avril Jean Elisabeth von Hoyningen-Huene ◽  
Marion Pohlner ◽  
Julius Degenhardt ◽  
Bert Engelen ◽  
...  

Information on environmental conditions shaping archaeal communities thriving at the seafloor of the central Pacific Ocean is limited. The present study was conducted to investigate the diversity, composition, and function of both entire and potentially active archaeal communities within Pacific deep-sea sediments. For this purpose, sediment samples were taken along the 180° meridian of the central Pacific Ocean. Community composition and diversity were assessed by Illumina tag sequencing targeting archaeal 16S rRNA genes and transcripts. Archaeal communities were dominated by CandidatusNitrosopumilus(Thaumarchaeota) and other members of theNitrosopumilaceae(Thaumarchaeota), but higher relative abundances of the Marine Group II (Euryarchaeota) were observed in the active compared to the entire archaeal community. The composition of the entire and the active archaeal communities was strongly linked to primary production (chlorophyll content), explaining more than 40% of the variance. Furthermore, we found a strong correlation of the entire archaeal community composition to latitude and silicic acid content, while the active community was significantly correlated with primary production and ferric oxide content. We predicted functional profiles from 16S rRNA data to assess archaeal community functions. Latitude was significantly correlated with functional profiles of the entire community, whereas those of the active community were significantly correlated with nitrate and chlorophyll content. The results of the present study provide first insights into benthic archaeal communities in the Pacific Ocean and environmental conditions shaping their diversity, distribution, and function. Additionally, they might serve as a template for further studies investigating archaea colonizing deep-sea sediments.


The Condor ◽  
1925 ◽  
Vol 27 (5) ◽  
pp. 185-196 ◽  
Author(s):  
Harold Kirby,

Sign in / Sign up

Export Citation Format

Share Document