scholarly journals Major and trace-element geochemistry of Late Cretaceous clastic rocks in the Jitai Basin, southeast China

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kai Yan ◽  
Chun-lian Wang ◽  
Steffen Mischke ◽  
Jiu-yi Wang ◽  
Li-jian Shen ◽  
...  

AbstractMajor, trace and rare earth element (REE) geochemistry of the late Cretaceous lower Zhoutian Formation from the Jitai Basin of Southeast China were measured by inductively coupled plasma mass spectrometry (ICP-MS) analysis to infer the provenance of the sediments and to reconstruct the palaeoenvironment and palaeoclimate. The wide range of Sr/Cu ratios point to a fluctuating palaeoclimate, and the negative correlation between the FeO/MnO and Al2O3/MgO ratios and the Sr/Cu ratio indicates that the late Cretaceous climate during the lower Zhoutian Formation in the Jitai Basin can be divided into two parts. The lower part experienced two cooling periods, whilst the upper part was dominated by warm-humid climate. Mostly corresponding trends of the B/Ga, Sr/Ba and Sr/Cu ratios show that the salinity changed consistently with the late Cretaceous climate during the lower Zhoutian Formation in the Jitai Basin. During the lower part, the salinity changed from salt water to fresh/brackish water. In the upper part, water was mainly fresh/brackish, and there were many changes from fresh/brackish water to salt water. The relatively stable Ni/Co, V/Cr, V/(V + Ni) and Ce/Ce* data indicate a long period of oxic conditions. The La-Th-Sc, Th-Sc-Zr/10 and La/Th-Hf data of the silt- and sandstones of the lower Zhoutian Formation show that its provenance was mainly a mixture of felsic upper crust sediments and older sedimentary rocks.

2021 ◽  
Author(s):  
Kai Yan ◽  
Chun-Lian Wang ◽  
Steffen Mischke ◽  
Jiu-Yi Wang ◽  
Li-Jian Shen ◽  
...  

Abstract Major, trace and rare earth element geochemistry of the late Cretaceous lower Zhoutian Formation from the Jitai Basin of Southeast China were measured by inductively coupled plasma mass spectromentry (ICP-MS) analysis. The paleoclimate, paleo-environment and provenance of lower Zhoutian Formation in the Jitai Basin are analyzed in detail with these data.According to the research, the range of Sr/Cu values is wide, which indicates the changeable palaeoclimate, the curves of FeO/MnO and Al2O3/MgO are negatively correlated with the Sr/Cu curves. These changes indicate that the palaeoclimate of the late Cretaceous lower Zhoutian Formation in the Jitai Basin was divided into two parts. The lower part experienced two cooling events; the upper part was dominated by warm humid climate.The changes of B/Ga and Sr/Ba curves are similar to Sr/Cu curves. According to these values, the salinity of the late Cretaceous lower Zhoutian Formation in the Jitai Basin was consistent with palaeoclimate. The salinity of lower part changed from salt water to fresh/brackish water. The upper part was mainly fresh/brackish water, and there were many changes from fresh/brackish water to salt water. The values of Ni/Co, V/Cr, V/(V + Ni) and Ce/Ce* are relatively stable, indicating a long-term oxidation environment. The diagrams of La-Th-Sc, Th-Sc-Zr/10, La/Th-Hf and sandstone-siltstone background function show that the provenance in lower Zhoutian Formation mainly is a mixture of upper crust felsic sediments and old components.


Author(s):  
Wenqing Huang ◽  
Pei Ni ◽  
Ting Shui ◽  
Junyi Pan ◽  
Mingsen Fan ◽  
...  

Abstract Primary rubies in the Ailao Shan of Yunnan Province, China, are found in three layers of marble. However, the origin and source rocks of placer rubies in the Yuanjiang area remains unclear. Trace element geochemistry and inclusion mineralogy within these materials can provide information on their petrogenesis and original source. Zircon, rutile, mica group minerals, titanite, and apatite group minerals were the main solid inclusions identified within the placer Yuanjiang rubies, along with other mineral inclusions such as pyrite, pyrrhotite, plagioclase group minerals, and scapolite group minerals. Laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) measurements showed that the placer rubies are characterized by average values of Mg (31 ppmw), Ti (97 ppmw), V (77 ppmw), Cr (3326 ppmw), Fe (71 ppmw), and Ga (66ppmw). A trace-element oxide diagram, Fe values (<350 ppmw), and the mineral inclusion assemblage suggest marble sources for the placer ruby. Therefore, the Yuanjiang rubies (both primary and placer) are metamorphic, and this fits well with the observations that skarn and related minerals are mostly absent in this deposit. Yuanjiang rubies can be readily separated from the high-iron rubies of different geological types by their Fe content (<1000 ppmw). The discriminators Mg, Ga, Cr, V, Fe, and Ti have potential in separating Yuanjiang rubies from some other marble-hosted deposits, such as Snezhnoe. Nevertheless, geographic origin determination remains a challenge when considering the similarities in compositional features between the Yuanjiang rubies and rubies from some other marble-hosted deposits worldwide (e.g., Luc Yen). The presence of kaolinite group minerals and clusters of euhedral, prismatic zircon crystals in ruby suggest a Yuanjiang origin.


Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1112
Author(s):  
Jorge Crespo ◽  
Elizabeth Holley ◽  
Katharina Pfaff ◽  
Madeleine Guillen ◽  
Roberto Huamani

The Mollehuaca and San Juan de Chorunga deposits are hosted in the poorly explored gold and copper trends of the Nazca-Ocoña metallogenic belt in Arequipa, Perú, which extends from Trujillo (9 °S) to Nazca-Ocoña (14 °S). The aim of this study is to characterize the age, occurrence, and distribution of quartz vein-hosted Au-Ag mineralization and associated trace elements (e.g., Hg, Pb, Cu, Zn, and Bi) in these deposits. Here, we present geological mapping, geochemical whole rock inductively coupled plasma (ICP)-MS data of the veins, petrographic observations, backscattered electron images, quantitative SEM-based automated mineralogy, and electron microprobe analyses (EMPA). Despite the fact that there are numerous small-scale gold mines in the Nazca-Ocoña metallogenic belt, there have been few studies that document the origin and geological evolution of these deposits or the implications for decision-making in exploration, metallurgical processing, and environmental management. In this research, we document the host rock age of the mineralized veins (129.2 ± 1.0 Ma; U-Pb in zircon), the mineralization age (95.86 ± 0.05 Ma; 40Ar/39Ar in secondary biotite), the occurrence and distribution of Au-Ag in the veins, the mineral zonation present in the vein system, and the zircon geochemistry, in order to provide tools for natural resource management in the metallogenic belt.


2018 ◽  
Vol 82 (S1) ◽  
pp. S281-S306 ◽  
Author(s):  
Olga Y. Plotinskaya ◽  
Vera D. Abramova ◽  
Elena O. Groznova ◽  
Svetlana G. Tessalina ◽  
Reimar Seltmann ◽  
...  

ABSTRACTMineralogical, electron microprobe analysis and laser ablation-inductively coupled plasma-mass spectrometry data from molybdenite within two porphyry copper deposits (Kalinovskoe and Birgilda) of the Birgilda-Tomino ore cluster (South Urals) are presented.† The results provide evidence that molybdenites from these two sites have similar trace-element chemistry. Most trace elements (Si, Fe, Co, Cu, Zn, Ag, Sb, Te, Pb, Bi, Au, As and Se) form mineral inclusions within molybdenite. The Re contents in molybdenite vary from 8.7 ppm to 1.13 wt.%. The Re distribution within single molybdenite flakes is always extremely heterogeneous. It is argued that a temperature decrease favours the formation of Re-rich molybdenite. The high Re content of molybdenite observed points to a mantle-derived source.


2021 ◽  
Author(s):  
R.C. Economos ◽  
et al.

<div>Table S1: SHRIMP zircon U-Pb geochronology data for six samples from the Cadiz Valley batholith. Table S2: SHRIMP zircon U-Pb geochronology data for six samples from the Federal 2-26 Cajon Pass drill core. Table S3: Whole-rock major- and trace-element geochemistry of granitic rocks from Joshua Tree National Park and the Cadiz Valley batholith measured by X-ray fluorescence (XRF) and inductively coupled plasma–mass spectrometry (ICP-MS). Table S4: Rb/Sr and Sm/Nd isotope data from the Joshua Tree National Park and Cadiz Valley batholith. Table S5: Locations, data, and references used to generate histograms in Figure 5.<br></div>


2021 ◽  
Author(s):  
R.C. Economos ◽  
et al.

<div>Table S1: SHRIMP zircon U-Pb geochronology data for six samples from the Cadiz Valley batholith. Table S2: SHRIMP zircon U-Pb geochronology data for six samples from the Federal 2-26 Cajon Pass drill core. Table S3: Whole-rock major- and trace-element geochemistry of granitic rocks from Joshua Tree National Park and the Cadiz Valley batholith measured by X-ray fluorescence (XRF) and inductively coupled plasma–mass spectrometry (ICP-MS). Table S4: Rb/Sr and Sm/Nd isotope data from the Joshua Tree National Park and Cadiz Valley batholith. Table S5: Locations, data, and references used to generate histograms in Figure 5.<br></div>


Sign in / Sign up

Export Citation Format

Share Document