scholarly journals Graphyne-3: a highly efficient candidate for separation of small gas molecules from gaseous mixtures

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Khatereh Azizi ◽  
S. Mehdi Vaez Allaei ◽  
Arman Fathizadeh ◽  
Ali Sadeghi ◽  
Muhammad Sahimi

AbstractTwo-dimensional nanosheets, such as the general family of graphenes have attracted considerable attention over the past decade, due to their excellent thermal, mechanical, and electrical properties. We report on the result of a study of separation of gaseous mixtures by a model graphyne-3 membrane, using extensive molecular dynamics simulations and density functional theory. Four binary and one ternary mixtures of H$$_2$$ 2 , CO$$_2$$ 2 , CH$$_4$$ 4 and C$$_2$$ 2 H$$_6$$ 6 were studied. The results indicate the excellence of graphyne-3 for separation of small gas molecules from the mixtures. In particular, the H$$_2$$ 2 permeance through the membrane is on the order of $$10^7$$ 10 7 gas permeation unit, by far much larger than those in other membranes, and in particular in graphene. To gain deeper insights into the phenomenon, we also computed the density profiles and the residence times of the gases near the graphyne-3 surface, as well as their interaction energies with the membrane. The results indicate clearly the tendency of H$$_2$$ 2 to pass through the membrane at high rates, leaving behind C$$_2$$ 2 H$$_6$$ 6 and larger molecules on the surface. In addition, the possibility of chemisorption is clearly ruled out. These results, together with the very good mechanical properties of graphyne-3, confirm that it is an excellent candidate for separating small gas molecules from gaseous mixtures, hence opening the way for its industrial use.

2021 ◽  
Author(s):  
Khatereh Azizi ◽  
S. Mehdi Vaez Allaei ◽  
Arman Fathizadeh ◽  
Ali Sadeghi ◽  
Muhammad Sahimi

Abstract Two-dimensional nanosheets, such as the general family of graphenes have attracted considerable attention over the past decade, due to their excellent thermal, mechanical, and electrical properties. We report on the result of a study of separation of gaseous mixtures by a model graphyne-3 membrane, using extensive molecular dynamics simulations and density functional theory. Four binary and one ternary mixtures of H2, CO2, CH4 and C2H6 were studied. Theresults indicate the excellence of graphyne-3 for separation of small gas molecules from the mixtures. In particular, the H2 permeance through the membrane is on the order of 107 gas permeation unit, by far much larger than those in other membranes, and in particular in graphene. To gain deeper insights into the phenomenon, we also computed the density profiles and the residence times of the gases near the graphyne-3 surface, as well as their interaction energies with the membrane. The results indicate clearly the tendency of H2 to pass through the membrane at high rates, leaving behind C2H6 and larger molecules on the surface. In addition, the possibility of chemisorption is clearly ruled out. These results, together with the very good mechanical properties of graphyne-3, confirm that it is an excellent candidate for separating small gas molecules from gaseous mixtures, hence opening the way for its industrial use.


Author(s):  
Lijuan Meng ◽  
Jinlian Lu ◽  
Yujie Bai ◽  
Lili Liu ◽  
Tang Jingyi ◽  
...  

Understanding the fundamentals of chemical vapor deposition bilayer graphene growth is crucial for its synthesis. By employing density functional theory calculations and classical molecular dynamics simulations, we have investigated the...


2021 ◽  
Author(s):  
Lanjuan Zhou ◽  
Sujing Yu ◽  
Yan Yang ◽  
Qi Li ◽  
Tingting Li ◽  
...  

In this paper, the effects of five noble metals (Au, Pt, Pd, Ag, Ru) doped MoSe2 on improving gas sensing performance were predicted through density functional theory (DFT) based on...


Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1306
Author(s):  
Francesco Ferrante ◽  
Antonio Prestianni ◽  
Marco Bertini ◽  
Dario Duca

Molecular dynamics simulations based on density functional theory were employed to investigate the fate of a hydrogen molecule shot with different kinetic energy toward a hydrogenated palladium cluster anchored on the vacant site of a defective graphene sheet. Hits resulting in H2 adsorption occur until the cluster is fully saturated. The influence of H content over Pd with respect to atomic hydrogen spillover onto graphene was investigated. Calculated energy barriers of ca. 1.6 eV for H-spillover suggest that the investigated Pd/graphene system is a good candidate for hydrogen storage.


RSC Advances ◽  
2016 ◽  
Vol 6 (104) ◽  
pp. 102264-102271 ◽  
Author(s):  
Sanjeev K. Gupta ◽  
Deobrat Singh ◽  
Kaptansinh Rajput ◽  
Yogesh Sonvane

The structural stability and electronic properties of the adsorption characteristics of several toxic gas molecules (NH3, SO2 and NO2) on a germanene monolayer were investigated using density functional theory (DFT) based on an ab initio method.


2018 ◽  
Vol 9 ◽  
pp. 1641-1646 ◽  
Author(s):  
Chunmei Zhang ◽  
Yalong Jiao ◽  
Fengxian Ma ◽  
Sri Kasi Matta ◽  
Steven Bottle ◽  
...  

The detection of single gas molecules is a highly challenging work because it requires sensors with an ultra-high level of sensitivity. By using density functional theory, here we demonstrate that the adsorption of a paramagnetic unpaired free radical gas (NO) on a monolayer of XS2 (X = Mo, W) can trigger the transition from semiconductor to half metal. More precisely, the single-layer XS2 (X = Mo, W) with NO adsorbed on it would behave like a metal in one spin channel while acting as a semiconductor in the other spin orientation. The half-metallicity is robust and independent of the NO concentration. In contrast, no half-metallic feature can be observed after the adsorption of other free radical gases such as NO2. The unique change in electronic properties after the adsorption of NO on transition-metal sulfides highlights an effective strategy to distinguish NO from other gas species by experimentally measuring spin-resolved transmission. Our results also suggest XS2 (X = Mo, W) nanosheets can act as promising nanoscale NO sensors.


Sign in / Sign up

Export Citation Format

Share Document