scholarly journals Restricted differentiative capacity of Wt1-expressing peritoneal mesothelium in postnatal and adult mice

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thomas P. Wilm ◽  
Helen Tanton ◽  
Fiona Mutter ◽  
Veronica Foisor ◽  
Ben Middlehurst ◽  
...  

AbstractPreviously, genetic lineage tracing based on the mesothelial marker Wt1, appeared to show that peritoneal mesothelial cells have a range of differentiative capacities and are the direct progenitors of vascular smooth muscle in the intestine. However, it was not clear whether this was a temporally limited process or continued throughout postnatal life. Here, using a conditional Wt1-based genetic lineage tracing approach, we demonstrate that the postnatal and adult peritoneum covering intestine, mesentery and body wall only maintained itself and failed to contribute to other visceral tissues. Pulse-chase experiments of up to 6 months revealed that Wt1-expressing cells remained confined to the peritoneum and failed to differentiate into cellular components of blood vessels or other tissues underlying the peritoneum. Our data confirmed that the Wt1-lineage system also labelled submesothelial cells. Ablation of Wt1 in adult mice did not result in changes to the intestinal wall architecture. In the heart, we observed that Wt1-expressing cells maintained the epicardium and contributed to coronary vessels in newborn and adult mice. Our results demonstrate that Wt1-expressing cells in the peritoneum have limited differentiation capacities, and that contribution of Wt1-expressing cells to cardiac vasculature is based on organ-specific mechanisms.

2020 ◽  
Author(s):  
Thomas P Wilm ◽  
Helen Tanton ◽  
Fiona Mutter ◽  
Veronica Foisor ◽  
Ben Middlehurst ◽  
...  

AbstractPreviously, genetic lineage tracing based on the mesothelial marker Wt1, appeared to show that peritoneal mesothelial cells have a range of differentiative capacities and are the direct progenitors of vascular smooth muscle in the intestine. However, it was not clear whether this was a temporally limited process or continued throughout postnatal life. Here, using a conditional Wt1-based genetic lineage tracing approach, we demonstrate that the postnatal and adult peritoneum covering intestine, mesentery and body wall only maintained itself and failed to contribute to other visceral tissues. Pulse-chase experiments of up to 6 months revealed that Wt1-expressing cells remained confined to the peritoneum and failed to differentiate into cellular components of blood vessels or other tissues underlying the peritoneum. Ablation of Wt1 in adult mice did not result in changes to the intestinal wall architecture. In the heart, we observed that Wt1-expressing cells maintained the epicardium and contributed to coronary vessels in newborn and adult mice. Our results demonstrate that Wt1-expressing cells in the peritoneum have limited differentiation capacities, and that contribution of Wt1-expressing cells to cardiac vasculature is based on organ-specific mechanisms.


Science ◽  
2014 ◽  
Vol 345 (6192) ◽  
pp. 90-94 ◽  
Author(s):  
Xueying Tian ◽  
Tianyuan Hu ◽  
Hui Zhang ◽  
Lingjuan He ◽  
Xiuzhen Huang ◽  
...  

The postnatal coronary vessels have been viewed as developing through expansion of vessels formed during the fetal period. Using genetic lineage tracing, we found that a substantial portion of postnatal coronary vessels arise de novo in the neonatal mouse heart, rather than expanding from preexisting embryonic vasculature. Our data show that lineage conversion of neonatal endocardial cells during trabecular compaction generates a distinct compartment of the coronary circulation located within the inner half of the ventricular wall. This lineage conversion occurs within a brief period after birth and provides an efficient means of rapidly augmenting the coronary vasculature. This mechanism of postnatal coronary vascular growth provides avenues for understanding and stimulating cardiovascular regeneration following injury and disease.


2021 ◽  
Author(s):  
Zhi Liu ◽  
Tian Chen ◽  
Sicheng Zhang ◽  
Tianfang Yang ◽  
Yun Gong ◽  
...  

Wnt/β-catenin signaling has been established as a potent inhibitor of adipogenesis in both white and brown adipocytes1–3. However, recent studies have implicated involvement of Wnt signaling components in adipogenesis and proper functions of adipose tissues4–6, leaving a critical knowledge gap as if Wnt/β-catenin signaling plays a direct role in adipogenesis. Here we show the existence of a population of Wnt/β-catenin signaling driven adipocytes in fat depots of embryonic and adult mice. Mechanistic studies revealed that the activation of Wnt/β-catenin signaling in such cells relies on Akt/mTOR signaling intracellularly and is essential for cell survival. This type of adipocyte is distinct from classic adipocytes in the transcriptomic and genomic signatures and can be readily induced from various sources of mesenchymal stromal cells including human bone marrow stromal cells. Using a genetic lineage-tracing model, we found that these adipocytes convert into beige adipocytes directly under thermal challenge. Importantly, targeted ablation of this population of adipocytes leads to failed beige adipocyte recruitment. Our studies uncover a novel adipocyte population that plays a central role in initiating adaptive thermogenesis in both cell autonomous and non-autonomous manners, shedding new insights into adipocyte diversity and regulatory mechanism of beiging in adipose tissues.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jin-Ze Tian ◽  
Sheng Xing ◽  
Jing-Yi Feng ◽  
Shu-Hua Yang ◽  
Yan-Fu Ding ◽  
...  

AbstractIn the adult pancreas, the presence of progenitor or stem cells and their potential involvement in homeostasis and regeneration remains unclear. Here, we identify that SET domain-containing protein 4 (SETD4), a histone lysine methyltransferase, is expressed in a small cell population in the adult mouse pancreas. Genetic lineage tracing shows that during pancreatic development, descendants of SETD4+ cells make up over 70% of pancreatic cells and then contribute to each pancreatic lineage during pancreatic homeostasis. SETD4+ cells generate newborn acinar cells in response to cerulein-induced pancreatitis in acinar compartments. Ablation of SETD4+ cells compromises regeneration of acinar cells, in contrast to controls. Our findings provide a new cellular narrative for pancreatic development, homeostasis and response to injury via a small SETD4+ cell population. Potential applications may act to preserve pancreatic function in case of pancreatic disease and/or damage.


Author(s):  
Wanbo Tang ◽  
Jian He ◽  
Tao Huang ◽  
Zhijie Bai ◽  
Chaojie Wang ◽  
...  

In the aorta-gonad-mesonephros (AGM) region of mouse embryos, pre-hematopoietic stem cells (pre-HSCs) are generated from rare and specialized hemogenic endothelial cells (HECs) via endothelial-to-hematopoietic transition, followed by maturation into bona fide hematopoietic stem cells (HSCs). As HECs also generate a lot of hematopoietic progenitors not fated to HSCs, powerful tools that are pre-HSC/HSC-specific become urgently critical. Here, using the gene knockin strategy, we firstly developed an Hlf-tdTomato reporter mouse model and detected Hlf-tdTomato expression exclusively in the hematopoietic cells including part of the immunophenotypic CD45– and CD45+ pre-HSCs in the embryonic day (E) 10.5 AGM region. By in vitro co-culture together with long-term transplantation assay stringent for HSC precursor identification, we further revealed that unlike the CD45– counterpart in which both Hlf-tdTomato-positive and negative sub-populations harbored HSC competence, the CD45+ E10.5 pre-HSCs existed exclusively in Hlf-tdTomato-positive cells. The result indicates that the cells should gain the expression of Hlf prior to or together with CD45 to give rise to functional HSCs. Furthermore, we constructed a novel Hlf-CreER mouse model and performed time-restricted genetic lineage tracing by a single dose induction at E9.5. We observed the labeling in E11.5 AGM precursors and their contribution to the immunophenotypic HSCs in fetal liver (FL). Importantly, these Hlf-labeled early cells contributed to and retained the size of the HSC pool in the bone marrow (BM), which continuously differentiated to maintain a balanced and long-term multi-lineage hematopoiesis in the adult. Therefore, we provided another valuable mouse model to specifically trace the fate of emerging HSCs during development.


2020 ◽  
Author(s):  
Caitlin C. Winkler ◽  
Luuli N. Tran ◽  
Ellyn P. Milan ◽  
Fernando García-Moreno ◽  
Santos J. Franco

In the developing nervous system, progenitors first generate neurons before making astrocytes and oligodendrocytes. We previously showed that increased Sonic hedgehog (Shh) signaling in dorsal forebrain progenitors is important for their production of oligodendrocytes as neurogenesis winds down. Here, we analyzed single-cell RNA sequencing datasets to better understand how Shh controls this neuron-to-oligodendrocyte switch in the neocortex. We first identified Shh-responding progenitors using a dataset in which Shh was overexpressed in the mouse dorsal forebrain. Pseudotime trajectory inferences revealed a subpopulation committed to the oligodendrocyte precursor cell (OPC) lineage. Genes upregulated along this lineage defined a pre-OPC state, as cells transitioned from progenitors to OPCs. Using several datasets from wild-type mouse and human embryos at different ages, we confirmed a pre-OPC state preceding OPC emergence during normal development. Finally, we show that pre-OPCs are enriched for a gene regulatory network involving the transcription factor Ascl1. Genetic lineage-tracing demonstrated Ascl1+ dorsal progenitors primarily make oligodendrocytes. We propose a model in which Shh shifts the balance between opposing transcriptional networks toward an Ascl1 lineage, thereby facilitating the switch between neurogenesis and oligodendrogenesis.


Circulation ◽  
2018 ◽  
Vol 138 (25) ◽  
pp. 2931-2939 ◽  
Author(s):  
Ronald J. Vagnozzi ◽  
Michelle A. Sargent ◽  
Suh-Chin J. Lin ◽  
Nathan J. Palpant ◽  
Charles E. Murry ◽  
...  

2018 ◽  
Vol 115 (4) ◽  
pp. E610-E619 ◽  
Author(s):  
Onur Basak ◽  
Teresa G. Krieger ◽  
Mauro J. Muraro ◽  
Kay Wiebrands ◽  
Daniel E. Stange ◽  
...  

The adult mouse subependymal zone provides a niche for mammalian neural stem cells (NSCs). However, the molecular signature, self-renewal potential, and fate behavior of NSCs remain poorly defined. Here we propose a model in which the fate of active NSCs is coupled to the total number of neighboring NSCs in a shared niche. Using knock-in reporter alleles and single-cell RNA sequencing, we show that the Wnt target Tnfrsf19/Troy identifies both active and quiescent NSCs. Quantitative analysis of genetic lineage tracing of individual NSCs under homeostasis or in response to injury reveals rapid expansion of stem-cell number before some return to quiescence. This behavior is best explained by stochastic fate decisions, where stem-cell number within a shared niche fluctuates over time. Fate mapping proliferating cells using a Ki67iresCreER allele confirms that active NSCs reversibly return to quiescence, achieving long-term self-renewal. Our findings suggest a niche-based mechanism for the regulation of NSC fate and number.


Sign in / Sign up

Export Citation Format

Share Document