scholarly journals Bumble bee queen pheromones are context-dependent

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Margarita Orlova ◽  
Etya Amsalem

AbstractQueen pheromones have long been studied as a major factor regulating reproductive division of labor in social insects. Hitherto, only a handful of queen pheromones were identified and their effects on workers have mostly been studied in isolation from the social context in which they operate. Our study examined the importance of behavioral and social context for the perception of queen semiochemicals by bumble bee workers. Our results indicate that a mature queen’s cuticular semiochemicals are capable of inhibiting worker reproduction only when accompanied by the queen’s visual presence and the offspring she produces, thus, when presented in realistic context. Queen’s chemistry, queen’s visual presence and presence of offspring all act to regulate worker reproduction, but none of these elements produces an inhibitory effect on its own. Our findings highlight the necessity to reconsider what constitutes a queen pheromone and suggest a new approach to the study of chemical ecology in social insects.

2021 ◽  
Author(s):  
Margarita Orlova ◽  
Etya Amsalem

Abstract Queen pheromones have long been studied as a major factor regulating reproductive division of labor in social insects. Hitherto, only a handful of queen pheromones were identified and their effects on workers have mostly been studied in isolation from the social context in which they operate. Our study examined the importance of behavioral and social context for the perception of queen semiochemicals by bumble bee workers. Our results indicate that a mature queen’s semiochemicals are capable of inhibiting worker reproduction only when accompanied by the queen’s visual presence and the offspring she produces, thus, when presented in realistic context. Queen’s chemistry, queen’s visual presence and presence of offspring all act in synergy to regulate worker reproduction, but none of these elements produces an inhibitory effect on its own. Our findings highlight the necessity to reconsider what constitutes a queen pheromone and suggest a new approach to the study of chemical ecology in social insects.


2015 ◽  
Vol 282 (1817) ◽  
pp. 20151800 ◽  
Author(s):  
Etya Amsalem ◽  
Margarita Orlova ◽  
Christina M. Grozinger

The regulation of reproductive division of labour is a key component in the evolution of social insects. Chemical signals are important mechanisms to regulate worker reproduction, either as queen-produced pheromones that coercively inhibit worker reproduction or as queen signals that honestly advertise her fecundity. A recent study suggested that a conserved class of hydrocarbons serve as queen pheromones across three independent origins of eusociality. In bumblebees ( Bombus terrestris ), pentacosane ( C 25) was suggested to serve as a queen pheromone. Here, we repeat these studies using a different species of bumblebee ( Bombus impatiens ) with a more controlled experimental design. Instead of dequeened colonies, we used same-aged, three-worker queenless groups comprising either experienced or naive workers (with/without adult exposure to queen pheromone). We quantified three hydrocarbons ( C 23, C 25 and C 27) on the cuticular surfaces of females and tested their effects on the two worker types. Our results indicate differences in responses of naive and experienced workers, genetic effects on worker reproduction, and general effects of hydrocarbons and duration of egg laying on ovary resorption rates. However, we found no evidence to support the theory that a conserved class of hydrocarbons serve as queen pheromones or queen signals in Bombus impatiens .


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3332 ◽  
Author(s):  
Luke Holman ◽  
Jelle S. van Zweden ◽  
Ricardo C. Oliveira ◽  
Annette van Oystaeyen ◽  
Tom Wenseleers

In a recent study, Amsalem, Orlova & Grozinger (2015) performed experiments withBombus impatiensbumblebees to test the hypothesis that saturated cuticular hydrocarbons are evolutionarily conserved signals used to regulate reproductive division of labor in many Hymenopteran social insects. They concluded that the cuticular hydrocarbon pentacosane (C25), previously identified as a queen pheromone in a congeneric bumblebee, does not affect worker reproduction inB. impatiens. Here we discuss some shortcomings of Amsalem et al.’s study that make its conclusions unreliable. In particular, several confounding effects may have affected the results of both experimental manipulations in the study. Additionally, the study’s low sample sizes (mean n per treatment = 13.6, range: 4–23) give it low power, not 96–99% power as claimed, such that its conclusions may be false negatives. Inappropriate statistical tests were also used, and our reanalysis found that C25substantially reduced and delayed worker egg laying inB. impatiens. We review the evidence that cuticular hydrocarbons act as queen pheromones, and offer some recommendations for future queen pheromone experiments.


2014 ◽  
Vol 281 (1780) ◽  
pp. 20132502 ◽  
Author(s):  
Harindra E. Amarasinghe ◽  
Crisenthiya I. Clayton ◽  
Eamonn B. Mallon

Insects are at the dawn of an epigenetics era. Numerous social insect species have been found to possess a functioning methylation system, previously not thought to exist in insects. Methylation, an epigenetic tag, may be vital for the sociality and division of labour for which social insects are renowned. In the bumble-bee Bombus terrestris , we found methylation differences between the genomes of queenless reproductive workers and queenless non-reproductive workers. In a follow up experiment, queenless workers whose genomes had experimentally altered methylation were more aggressive and more likely to develop ovaries compared with control queenless workers. This shows methylation is important in this highly plastic reproductive division of labour. Methylation is an epigenetic tag for genomic imprinting (GI). It is intriguing that the main theory to explain the evolution of GI predicts that GI should be important in this worker reproduction behaviour.


2016 ◽  
Author(s):  
Luke Holman ◽  
Jelle S van Zweden ◽  
Ricardo Caliari Oliveira ◽  
Annette van Oystaeyen ◽  
Tom Wenseleers

In a recent study, Amsalem et al. performed experiments with Bombus impatiens bumblebees to test the hypothesis that saturated cuticular hydrocarbons are evolutionarily conserved signals used to regulate reproductive division of labour in many Hymenopteran social insects. They concluded that the cuticular hydrocarbon pentacosane (C25), previously identified as a queen pheromone in a congeneric bumblebee, does not affect worker reproduction in B. impatiens. Here we identify some significant shortcomings of Amsalem et al.’s study that make its conclusions unreliable. In particular, inappropriate statistical tests were used, and a reanalysis of their dataset found that C25 substantially reduced and delayed worker egg laying in B. impatiens. Additionally, the study’s low sample sizes (mean n per treatment = 13.6, range: 4-23) give it low power, not 99% power as claimed, meaning that some its non-significant results may be false negatives. Additionally, several confounding effects may have affected the results of both experimental manipulations in the study


2008 ◽  
Vol 105 (46) ◽  
pp. 17884-17889 ◽  
Author(s):  
Abderrahman Khila ◽  
Ehab Abouheif

A hallmark of eusociality in ants is the reproductive division of labor between queens and workers. Yet, nothing is known about the molecular mechanisms underlying reproduction in this group. We therefore compared the developmental genetic capacity of queens and workers to reproduce in several eusocially advanced species from the two largest subfamilies of ants, the Myrmicinae and Formicinae. In flies, the asymmetric localization of maternally encoded determinants (mRNAs and proteins) during oogenesis establishes oocyte polarity and subsequently ensures proper embryonic development. Vasa and nanos, two key maternal determinants, are properly localized in the posterior of queen oocytes, but their localization is impaired in those of the workers. This mislocalization leads to severe embryonic defects in worker progeny, and therefore, represents a constraint on worker reproduction that we call ‘reproductive constraint.’ We show that reproductive constraint is phylogenetically widespread, and is at high levels in most species tested. Reproductive constraint can simultaneously reduce or eliminate the workers' ability to produce viable eggs for reproduction, while preserving their ability to produce trophic eggs for nutrition, and thus, may have been the basis for the evolutionary retention of worker ovaries in the majority of ants. We propose that high levels of reproductive constraint has most likely evolved as a consequence of selection at the colony level to reduce or eliminate any potential conflict over worker reproduction, therefore maintaining harmony and colony efficiency in advanced ant societies.


2016 ◽  
Vol 39 ◽  
Author(s):  
Ewa Joanna Godzińska

AbstractGowdy & Krall provide an interesting discussion of evolutionary origins and consequences of ultrasociality. However, some of their statements concerning various features of ant and human social behavior do not adequately reflect present knowledge about the discussed issues, which include, among others, polyethism, cultural information transfer, within-group conflicts and resistance in ant societies, and reproductive division of labor in humans.Gowdy & Krall (G&K) provide an interesting discussion of evolutionary origins and consequences of ultrasociality, an advanced form of social behavior that evolved independently in both social insects and humans. Their reflections are thought-provoking, but some statements concerning various features of ant and human social behavior do not reflect adequately the present knowledge about the discussed issues.


2020 ◽  
Author(s):  
Mauricio González-Forero ◽  
Jorge Peña

AbstractEusociality, where largely unreproductive offspring help their mothers reproduce, is a major form of social organization in social insects and other animals. An increasingly documented feature of eusociality is that mothers induce their offspring to help by means of hormones, pheromones, or behavioral displays, with evidence often indicating that offspring help voluntarily. The co-occurrence of widespread maternal influence and voluntary offspring help may be explained by what we call the converted helping hypothesis, whereby helping originally arising from maternal manipulation subsequently becomes voluntary. This hypothesis requires that parent-offspring conflict is eventually dissolved—for instance, if the benefit of helping increases sufficiently over evolutionary time. Here we show that maternal manipulation of offspring help enables the mother to increase her fertility to such extent that parent-offspring conflict is transformed into parent-offspring agreement. Such conflict dissolution mechanism requires that helpers alleviate the total percent life-history trade-off limiting maternal fertility, and results in reproductive division of labor, high queen fertility, and honest queen signaling suppressing worker reproduction, thus exceptionally recovering diverse features of eusociality. This mechanism is widely applicable, thus suggesting a general explanation for the origin of eusociality, the prevalence of maternal influence, and the offspring’s willingness to help. Overall, our results explain how a major evolutionary transition can happen from ancestral conflict.


Sign in / Sign up

Export Citation Format

Share Document