scholarly journals In vivo analysis of onset and progression of retinal degeneration in the Nr2e3rd7/rd7 mouse model of enhanced S-cone sensitivity syndrome

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Giulia Venturini ◽  
Despina Kokona ◽  
Beatrice L. Steiner ◽  
Emanuele G. Bulla ◽  
Joel Jovanovic ◽  
...  

AbstractThe photoreceptor-specific nuclear receptor Nr2e3 is not expressed in Nr2e3rd7/rd7 mice, a mouse model of the recessively inherited retinal degeneration enhanced S-cone sensitivity syndrome (ESCS). We characterized in detail C57BL/6J Nr2e3rd7/rd7 mice in vivo by fundus photography, optical coherence tomography and fluorescein angiography and, post mortem, by histology and immunohistochemistry. White retinal spots and so-called ‘rosettes’ first appear at postnatal day (P) 12 in the dorsal retina and reach maximal expansion at P21. The highest density in ‘rosettes’ is observed within a region located between 100 and 350 µM from the optic nerve head. ‘Rosettes’ disappear between 9 to 12 months. Non-apoptotic cell death markers are detected during the slow photoreceptor degeneration, at a rate of an approximately 3% reduction of outer nuclear layer thickness per month, as observed from 7 to 31 months of age. In vivo analysis of Nr2e3rd7/rd7 Cx3cr1gfp/+ retinas identified microglial cells within ‘rosettes’ from P21 on. Subretinal macrophages were observed in vivo and by confocal microscopy earliest in 12-months-old Nr2e3rd7/rd7 retinas. At P21, S-opsin expression and the number of S-opsin expressing dorsal cones was increased. The dorso-ventral M-cone gradient was present in Nr2e3rd7/rd7 retinas, but M-opsin expression and M-opsin expressing cones were decreased. Retinal vasculature was normal.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Giulia Venturini ◽  
Despina Kokona ◽  
Beatrice L. Steiner ◽  
Emanuele G. Bulla ◽  
Joel Jovanovic ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kenichi Makabe ◽  
Sunao Sugita ◽  
Michiko Mandai ◽  
Yoko Futatsugi ◽  
Masayo Takahashi

Abstract In patients with retinitis pigmentosa (RP), color fundus photography and fundus autofluorescence (FAF) have been used to estimate the disease progression. To understand the origin and the diagnostic interpretation of the fundus color and FAF, we performed in vivo imaging of fundus color and FAF together with histological analyses of the retinal degeneration process using the RP model mice, rd10. FAF partly represented the accumulation of microglia in the photoreceptor outer segments. Fundus whitening suggested the presence of apoptotic cells, which spatiotemporally preceded increase in FAF. We observed two patterns of FAF localization, arcuate and diffuse, each indicating different pattern of apoptosis, wavy and diffuse, respectively. Diffuse pattern of apoptosis was suppressed in dark-raised rd10 mice, in which outer nuclear layer (ONL) loss was significantly suppressed. The occupancy of FAF correlated with the thinning rate of the ONL. Fractalkine, a microglia chemotactic factor, was detected in apoptotic photoreceptors, suggesting chemokine-induced recruitment of microglia into the ONL, which paralleled with accelerated ONL loss and increased FAF occupancy. Thus, we propose that the degree of photoreceptor apoptosis and the rate of ONL thinning in RP patients might be read from the fundus color and the FAF.


2021 ◽  
Vol 205 ◽  
pp. 108480
Author(s):  
Mansour Rahimi ◽  
Sophie Leahy ◽  
Nathanael Matei ◽  
Norman P. Blair ◽  
Shinwu Jeong ◽  
...  

2020 ◽  
Vol 50 (11) ◽  
pp. 1834-1837
Author(s):  
Carolin Brandl ◽  
Sieglinde Angermüller ◽  
Lars Nitschke

2002 ◽  
Vol 55 (4) ◽  
pp. 197-209 ◽  
Author(s):  
Haydn M. Prosser ◽  
David G. Cooper ◽  
Ian T. Forbes ◽  
Martin Geppert ◽  
Andrew D. Gribble ◽  
...  

2015 ◽  
Vol 56 (11) ◽  
pp. 6839 ◽  
Author(s):  
Adam M. Hanif ◽  
Eric C. Lawson ◽  
Megan Prunty ◽  
Marissa Gogniat ◽  
Moe H. Aung ◽  
...  

Gene Therapy ◽  
1997 ◽  
Vol 4 (7) ◽  
pp. 683-690 ◽  
Author(s):  
C Jomary ◽  
KA Vincent ◽  
J Grist ◽  
MJ Neal ◽  
SE Jones

2018 ◽  
Vol 17 (5) ◽  
pp. 590-600 ◽  
Author(s):  
Polina A. Egorova ◽  
Alexandra V. Gavrilova ◽  
Ilya B. Bezprozvanny

Sign in / Sign up

Export Citation Format

Share Document