scholarly journals Multi frequency multi bit amplitude modulation of spoof surface plasmon polaritons by schottky diode bridged interdigital SRRs

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haotian Ling ◽  
Baoqing Zhang ◽  
Mingming Feng ◽  
Pengfei Qian ◽  
Yiming Wang ◽  
...  

AbstractMulti-frequency multi-bit programmable amplitude modulation (AM) of spoof surface plasmon polaritons (SPPs) is realized at millimeter wave frequencies with interdigital split-ring resonators (SRRs) and In-Ga-Zn-O (IGZO) Schottky diodes. Periodic SRRs on a metal line guide both SRR mode and spoof SPP mode, the former of which rejects the spoof SPP propagation at the SRR resonant frequencies. To actively modulate the amplitude of spoof SPPs, IGZO Schottky diodes are fabricated in the SRR gaps, which continuously re-configure SRRs to metallic loops by applying bias. Interdigital gaps are designed in SRRs to increase the capacitance, thus red shifting the resonant frequencies, which significantly broadens the operation bandwidth of multi-frequency AM. Thus, cascading different kinds of interdigital SRRs with Schottky diodes enables multi-frequency multi-bit AM programmable. As a demonstration, a dual-frequency device was fabricated and characterized, which achieved significant multi-bit AM from −12.5 to −6.2 dB at 34.7 GHz and from −26 to −8.5 dB at 50 GHz independently and showed programmable capability.

2019 ◽  
Vol 11 (08) ◽  
pp. 774-781 ◽  
Author(s):  
Luping Li ◽  
Lijuan Dong ◽  
Peng Chen ◽  
Kai Yang

AbstractA dualband rejection filter and a triband rejection filter are proposed in this letter, both of which are implemented by cascading spoof surface plasmon polaritons (SSPPs) of the same structure but with diverse rejection bands. Compared with traditional ones, the proposed filters provide more compact structures, wider rejection bands, and better independent tunability. In the proposed filters, the rejection bandwidth, the center frequency of the rejection band and the filter's cutoff frequency can be adjusted independently. And the different rejection bands in the same filter also can be independently controlled. Agreements between the dispersion of SSPP units and the S21 of filters are also presented. Measurement results demonstrate that both filters load multiple rejection bands on the 27.7 GHz wide low-pass band and all the rejection bands locate in Ku and K bands. The average rejection bandwidth and the average rejection depth of the two filters are 1.49 GHz and 42.1 dB, respectively.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7311
Author(s):  
Ehsan Farokhipour ◽  
Mohammad Mehrabi ◽  
Nader Komjani ◽  
Can Ding

This paper presents a novel single-layer dual band-rejection-filter based on Spoof Surface Plasmon Polaritons (SSPPs). The filter consists of an SSPP-based transmission line, as well as six coupled circular ring resonators (CCRRs) etched among ground planes of the center corrugated strip. These resonators are excited by electric-field of the SSPP structure. The added ground on both sides of the strip yields tighter electromagnetic fields and improves the filter performance at lower frequencies. By removing flaring ground in comparison to prevalent SSPP-based constructions, the total size of the filter is significantly decreased, and mode conversion efficiency at the transition from co-planar waveguide (CPW) to the SSPP line is increased. The proposed filter possesses tunable rejection bandwidth, wide stop bands, and a variety of different parameters to adjust the forbidden bands and the filter’s cut-off frequency. To demonstrate the filter tunability, the effect of different elements like number (n), width (WR), radius (RR) of CCRRs, and their distance to the SSPP line (yR) are surveyed. Two forbidden bands, located in the X and K bands, are 8.6–11.2 GHz and 20–21.8 GHz. As the proof-of-concept, the proposed filter was fabricated, and a good agreement between the simulation and experiment results was achieved.


2019 ◽  
Vol 22 (1) ◽  
pp. 015001 ◽  
Author(s):  
Asad Aziz ◽  
Hao Chi Zhang ◽  
Pie Hang He ◽  
Wen Xuan Tang ◽  
Yi Ren ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3288
Author(s):  
Dujuan Wei ◽  
Youlin Geng ◽  
Pengquan Zhang ◽  
Zhonghai Zhang ◽  
Chuan Yin

In this paper, a titled-beam antenna based on spoof surface plasmon polaritons (SSPPs) transmission lines (TLs) is proposed. The parallel SSPPs-TL is a slow-wave TL, which is able to limit waves in the TL strictly. By periodically introducing a set of tapered stubs along the SSPPs-TL, the backward endfire beams are formed by the surface waves in the slow-wave radiation region. Then, through the placement of a big metal plate below the endfire antenna, the backward endfire beams are tilted, and the tilted angle of the beams are steered by the distance of the metal plate and antenna. Over the band of 5.7 GHz~7.0 GHz, the tilted antenna performs constant shapes of radiation patterns. The gain keeps stable at around 12 dBi and the 1-dB gain bandwidth is 20%. The measured results of the fabricated prototypes confirm the design theory and simulated results.


Sign in / Sign up

Export Citation Format

Share Document