A Novel Differential Microstrip Line Based on Spoof Surface Plasmon Polaritons

Author(s):  
Wen Jiang ◽  
Jun Wang ◽  
Lei Zhao
Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1978
Author(s):  
Longfei Tan ◽  
Kaida Xu ◽  
Yiqun Liu ◽  
Yingjiang Guo ◽  
Jianlei Cui

A new type of spoof surface plasmon polaritons (SSPPs) developed from conventional substrate integrated waveguide (SIW) using ring slots and vias is proposed in this paper. The asymptotic frequency and lower cutoff frequency of the SSPP structure can be easily tuned by changing the width of SIW walls and radius of the ring slot, respectively. A trapezoidal microstrip line and a small ring slot are used for the efficient mode conversion to smoothly transit from microstrip line to the proposed SSPP structure. The presented SSPPs have a flat bandpass filtering response with adjustable center frequency and bandwidth. In order to better verify the transmission and cutoff characteristics, two bandpass filters using the proposed SSPPs with relative bandwidths of 61.7% and 76.4%, respectively, are fabricated and measured. Good agreement between the simulations and measurements verifies the proposed design idea.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Chia Ho Wu ◽  
Linfang Shen ◽  
Hang Zhang ◽  
Jinhua Yan ◽  
Da Jun Hou ◽  
...  

AbstractIn this paper, the characteristics of a class of transmission lines which support spoof surface plasmon polaritons are investigated both numerically and experimentally. In order to provide the characteristic impedance of spoof surface plasmon polaritons for PCB designers, the equivalent circuit parameters of the microstrip line periodically structured on subwavelength scale are extracted with the numerical method. It is found that the equivalent circuit parameters significantly vary with frequency when the subwavelength periodic structure is introduced into the edge of the conventional microstrip line. The results of time-domain measurements show that spoof surface plasmon polaritons have remarkable advantage over conventional microstrip lines and can be directly used in actual high-speed circuits, which is helpful for eliminating the doubts whether the metamaterials can be directly used in actual circuits.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3288
Author(s):  
Dujuan Wei ◽  
Youlin Geng ◽  
Pengquan Zhang ◽  
Zhonghai Zhang ◽  
Chuan Yin

In this paper, a titled-beam antenna based on spoof surface plasmon polaritons (SSPPs) transmission lines (TLs) is proposed. The parallel SSPPs-TL is a slow-wave TL, which is able to limit waves in the TL strictly. By periodically introducing a set of tapered stubs along the SSPPs-TL, the backward endfire beams are formed by the surface waves in the slow-wave radiation region. Then, through the placement of a big metal plate below the endfire antenna, the backward endfire beams are tilted, and the tilted angle of the beams are steered by the distance of the metal plate and antenna. Over the band of 5.7 GHz~7.0 GHz, the tilted antenna performs constant shapes of radiation patterns. The gain keeps stable at around 12 dBi and the 1-dB gain bandwidth is 20%. The measured results of the fabricated prototypes confirm the design theory and simulated results.


Sign in / Sign up

Export Citation Format

Share Document