scholarly journals Optimization studies of stir casting parameters and mechanical properties of TiO2 reinforced Al 7075 composite using response surface methodology

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adeolu A. Adediran ◽  
Abayomi A. Akinwande ◽  
Oluwatosin A. Balogun ◽  
Bayode J. Olorunfemi ◽  
Saravana Kumar M.

AbstractStir casting is a common metallurgical route in the casting of aluminum composites. Series of work done in this aspect considered the development of the composites with fixed stir casting parameters without applying an optimization approach. These parameters affect the microstructure and performance of the composites. The study is focused on the optimization of the stir casting parameters in the production of Al 7075 reinforced with TiO2 microparticles for performance improvement. Three stir casting parameters of stirring temperature, speed, and time were varied and optimized using the central composite design technique of the response surface method. Properties evaluated were ultimate tensile strength, hardness, impact strength, elastic modulus, and compressive strength. ANOVA results showed that the three stir casting parameters had a significant impact on the property responses. Five quadratic models were established for the properties linking them to the factors. The models were confirmed to be statistically significant at a confidence level of 95% and variations were observed to be < 5%. The interaction profile of the parameters as per response surface was analyzed. Contour plots associated with each interaction gave different ranges of stirring parameters in which each property can be maximized. Simultaneous optimization of the properties using Minitab 19 software showcased 779.3 °C, 574.2 rpm, and 22.5 min as the optimal stir casting parameters for temperature, speed and time respectively.

2000 ◽  
Vol 16 (2) ◽  
pp. 107-114 ◽  
Author(s):  
Louis M. Hsu ◽  
Judy Hayman ◽  
Judith Koch ◽  
Debbie Mandell

Summary: In the United States' normative population for the WAIS-R, differences (Ds) between persons' verbal and performance IQs (VIQs and PIQs) tend to increase with an increase in full scale IQs (FSIQs). This suggests that norm-referenced interpretations of Ds should take FSIQs into account. Two new graphs are presented to facilitate this type of interpretation. One of these graphs estimates the mean of absolute values of D (called typical D) at each FSIQ level of the US normative population. The other graph estimates the absolute value of D that is exceeded only 5% of the time (called abnormal D) at each FSIQ level of this population. A graph for the identification of conventional “statistically significant Ds” (also called “reliable Ds”) is also presented. A reliable D is defined in the context of classical true score theory as an absolute D that is unlikely (p < .05) to be exceeded by a person whose true VIQ and PIQ are equal. As conventionally defined reliable Ds do not depend on the FSIQ. The graphs of typical and abnormal Ds are based on quadratic models of the relation of sizes of Ds to FSIQs. These models are generalizations of models described in Hsu (1996) . The new graphical method of identifying Abnormal Ds is compared to the conventional Payne-Jones method of identifying these Ds. Implications of the three juxtaposed graphs for the interpretation of VIQ-PIQ differences are discussed.


2014 ◽  
Vol 42 (4) ◽  
pp. 290-304
Author(s):  
Rajarajan Aiyengar ◽  
Jyoti Divecha

ABSTRACT The blends of natural rubber (NR), polybutadiene rubber (BR), and other forms of rubbers are widely used for enhancing the mechanical and physical properties of rubber compounds. Lots of work has been done in conditioning and mixing of NR/BR blends to improve the properties of its rubber compounds and end products such as tire tread. This article employs response surface methodology designed experiments in five factors; high abrasion furnace carbon black (N 330), aromatic oil, NR/BR ratio, sulfur, and N-oxydiethylene-2-benzothiazole sulfenamide for determination of combined and second order effects of the significant factors leading to simultaneous optimization of the NR/BR blend system. One of the overall optimum of eight properties existed at carbon 44 phr, oil 6.1 phr, NR/BR 78/22 phr with the following values of properties: tensile strength (22 MPa), elongation at break (528%), tear resistance (30 kg/mm), rebound resilience (67%), moderate hardness (68 International rubber hardness degrees) with low heat buildup (17 °C), permanent set (12%), and abrasion loss (57 mm3). More optimum combinations can easily be determined from the NR/BR blend system models contour plots.


2013 ◽  
Vol 22 (08) ◽  
pp. 1350067 ◽  
Author(s):  
SEYYED AMIR ASGHARI ◽  
ATENA ABDI ◽  
OKYAY KAYNAK ◽  
HASSAN TAHERI ◽  
HOSSEIN PEDRAM

Electronic equipment used in harsh environments such as space has to cope with many threats. One major threat is the intensive radiation which gives rise to Single Event Upsets (SEU) that lead to control flow errors and data errors. In the design of embedded systems to be used in space, the use of radiation tolerant equipment may therefore be a necessity. However, even if the higher cost of such a choice is not a problem, the efficiency of such equipment is lower than the COTS equipment. Therefore, the use of COTS with appropriate measures to handle the threats may be the optimal solution, in which a simultaneous optimization is carried out for power, performance, reliability and cost. In this paper, a novel method is presented for control flow error detection in multitask environments with less memory and performance overheads as compared to other methods seen in the literature.


Sign in / Sign up

Export Citation Format

Share Document