scholarly journals Changes in elbow joint contact area in symptomatic valgus instability of the elbow in baseball players

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kyosuke Numaguchi ◽  
Daisuke Momma ◽  
Yuki Matsui ◽  
Jun Oohinata ◽  
Takayoshi Yamaguchi ◽  
...  

AbstractThe aim of this study was to evaluate the joint contact area of the dominant side and that of the non-dominant side without valgus instability in symptomatic pitchers. Ten symptomatic elbow medial ulnar collateral ligament (UCL) deficient baseball pitchers participated in this study. Computed tomography (CT) data from the dominant and non-dominant elbows were obtained with and without elbow valgus stress. The CT imaging data of each elbow joint were reconstructed using a 3D reconstruction software package, and the radiocapitellar and ulnohumeral joint contact areas were calculated. The center of the contact area and the translation from the position without stress to the position with valgus stress were also calculated. With elbow valgus stress, the contact area changed, and the center of the radiocapitellar joint contact area translated significantly more laterally in the dominant elbow than in the non-dominant elbow (p = 0.0361). In addition, the center of the ulnohumeral joint contact area translated significantly more posteriorly in the dominant elbow than in the non-dominant elbow (p = 0.0413). These changes in contact areas could be the reason for cartilage injury at the posterior trochlea in pitchers with UCL deficiency.

2021 ◽  
Author(s):  
Kyosuke Numaguchi ◽  
Daisuke Momma ◽  
Yuki Matsui ◽  
Jun Oohinata ◽  
Takayoshi Yamaguchi ◽  
...  

Abstract The aim of this study was to evaluate the joint contact area of the dominant side and that of the non-dominant side without valgus instability in symptomatic pitchers. Ten symptomatic elbow medial ulnar collateral ligament (UCL) deficient baseball pitchers participated in this study. Computed tomography (CT) data from the dominant and non-dominant elbows were obtained with and without elbow valgus stress. The CT imaging data of each elbow joint were reconstructed using a 3D reconstruction software package, and the radiocapitellar and ulnohumeral joint contact areas were calculated. The center of the contact area and the translation from the position without stress to the position with valgus stress were also calculated. With elbow valgus stress, the contact area changed, and the center of the radiocapitellar joint contact area translated significantly more laterally in the dominant elbow than in the non-dominant elbow (P = 0.0361). In addition, the center of the ulnohumeral joint contact area translated significantly more posteriorly in the dominant elbow than in the non-dominant elbow (P = 0.0413). These changes in contact areas could be the reason for cartilage injury at the posterior trochlea in pitchers with UCL deficiency.


1990 ◽  
Vol 23 (4) ◽  
pp. 369
Author(s):  
J.O. Søjbjerg ◽  
P. Kjærsgaard-Andersen ◽  
F. Linde

2005 ◽  
Vol 33 (10) ◽  
pp. 1565-1574 ◽  
Author(s):  
Neil Upadhyay ◽  
Samuel R. Vollans ◽  
Bahaa B. Seedhom ◽  
Roger W. Soames

Background Although 10% postoperative patellar tendon shortening after bone–patellar tendon–bone autograft reconstruction of the anterior cruciate ligament has been reported, there are no published studies assessing the effect of shortening on patellofemoral joint biomechanics under physiological loading conditions. Purpose To investigate the influence of patellar tendon shortening on patellofemoral joint biomechanics. Study Design Controlled laboratory study. Methods The authors evaluated the patellofemoral contact area, the location of contact, and the patellofemoral joint reaction force and contact stresses in 7 cadaveric knees before and after 10% patellar tendon shortening. Shortening was achieved using a specially designed device. Experimental conditions simulating those occurring during level walking were employed: physiological quadriceps loads and corresponding angles of tibial rotation were applied at 15 °, 30 °, and 60 ° flexion of the knee. Patellofemoral joint contact areas were measured before and after shortening using the silicone oil–carbon black powder suspension squeeze technique. Results After patellar tendon shortening, patellofemoral joint contact areas were displaced proximally on the patellar surface and distally on the femoral surface. Although the contact area increased by 18% at 15 ° of knee flexion (P=. 04), no significant change occurred at 30 ° or 60 ° of knee flexion (P>. 05). Patellofemoral contact stress remained unchanged after patellar tendon shortening (P>. 05) at each flexion angle. Conclusion Our results suggest that a 10% shortening of the patellar tendon does not alter patellar contact stresses during locomotion. It is not clear whether apparent changes in contact location in all positions and contact area at 15 ° would have clinical consequences.


Hand ◽  
2019 ◽  
pp. 155894471986851
Author(s):  
Charles C. Lin ◽  
Nilay A. Patel ◽  
Yasuo Itami ◽  
Michelle H. McGarry ◽  
Steven S. Shin ◽  
...  

Background: Thumb ulnar collateral ligament (UCL) injuries are common, but the kinematics of these injuries have not been comprehensively described, especially regarding kinematic changes with progressive UCL injury. Methods: Eleven cadaveric thumbs underwent kinematic testing under 4 conditions: intact, partial tear (50%) of the proper UCL, full tear of the proper UCL, and complete tear of both the proper and accessory UCL. Kinematic testing parameters included varus/valgus stress, pronation/supination, and volar/dorsal translation at −10 degree, 0 degree, 15 degree, and 30 degree of metacarpophalangeal flexion. Results: Partial tear of the proper UCL did not result in significant increases in laxity in any direction compared with intact ( P ≥ .132). Full tear of the proper UCL resulted in a significant increase in valgus angulation (18.8° ± 1.7° vs 11.5° ± 1.5°; P = .024) and pronation (15.4° ± 2.5° vs 12.6° ± 2.3°; P = .034) at 30 degree of flexion relative to intact. Complete tear of both the proper and accessory collateral ligaments resulted in increased valgus angulation at all degrees of flexion ( P < .001). Complete tear also resulted in a significant volar translation at 0 degree, 15 degree, and 30 degree of flexion ( P ≤ .016). Conclusion: Partial tear of the proper UCL does not significantly affect the stability of the joint, but full tear of the proper UCL increases valgus instability at 30 degree of flexion. Complete tear of the UCL is necessary for increased varus/valgus instability at all degrees of flexion and results in significant increases in pronation/supination and volar translation.


2021 ◽  
Vol 9 (11) ◽  
pp. 232596712110459
Author(s):  
Kanta Yoshioka ◽  
Kanta Matsuzawa ◽  
Tomoya Ikuta ◽  
Sae Maruyama ◽  
Mutsuaki Edama

Background: Ulnar collateral ligament (UCL) injury is a common sports injury among overhead-throwing athletes and causes medial elbow pain and instability. UCL injury is generally diagnosed based on symptoms, physical findings, and image evaluation. To standardize the method for evaluating elbow valgus instability, more information is needed regarding changes in the medial elbow joint space (JS) in healthy elbows. Purpose/Hypothesis: The purpose of this study was to measure the JS during the application of elbow valgus stress at different elbow flexion angles and loads and to clarify the presence of defensive muscle contractions during elbow valgus stress. It was hypothesized that the JS will differ according to different limb positions and loads and that defensive contractions will occur when elbow valgus stress is >90 N. Study Design: Controlled laboratory study. Methods: Elbow joints on the nondominant side were examined in 20 healthy male university students (mean age, 21 ± 0.2 years) at 30°, 60°, and 90° of elbow flexion. To create valgus stress on the elbow, loads of 30, 60, 90, 120, and 150 N were applied with a Telos stress device and with gravity stress on the forearm. The medial JS was measured ultrasonographically during the application of elbow valgus stress. Electrodes were attached to the pronator teres muscle, and defensive muscle contractions were measured using electromyography during the application of elbow valgus stress. Repeated-measures analysis of variance and paired t tests were used to compare the JS at each elbow angle and each valgus stress load, and the Bonferroni method was used as a post hoc test. Results: At 30° of elbow flexion, the JS was significantly higher at 30 N versus 0 N and at 60 N versus 0 or 30 N ( P ≤ .018 for all). At 60° of flexion, the JS was significantly higher at 30 N versus 0 N, at 60 N versus 0 and 30 N, and at 90 N versus 0, 30, and 60 N ( P ≤ .024 for all). At 90° of elbow flexion, the JS was significantly higher at 30 N versus 0 N and at 60 N versus 0 and 30 N ( P ≤ .028 for all). Defensive muscle contraction did not occur at any elbow flexion angles at elbow valgus stress ≤60 N. Conclusion: The lack of muscular contraction at elbow valgus stress ≤60 N may reflect the function of the medial collateral ligament. Clinical Relevance: Elbow valgus stress ≤60 N allows for the evaluation of the joint opening.


2020 ◽  
Author(s):  
Shota Hoshika ◽  
Akimoto Nimura ◽  
Norimasa Takahashi ◽  
Hiroyuki Sugaya ◽  
Keiichi Akita

Abstract Background: Flexor digitorum superficialis (FDS) muscle provides dynamic stabilization and medial elbow support for ulnar collateral ligament (UCL). The FDS contraction significantly affects the medial joint distance (MJD) through grip contraction. However, it remains unclear whether FDS activity alone contributes to medial elbow stability, or together with the activation of the flexor digitorum profundus during grip contraction, and which finger’s FDS is the main contributor to elbow stability. We investigated the resistive effects of isolated FDS contraction in individual fingers against valgus stress in the elbow joint using stress ultrasonography (US).Methods: We investigated 17 healthy males (mean age, 27 ± 5 years). Valgus stress US was performed using the Telos device, with the elbow at 30° flexion. MJD was measured for each arm during 3 separate conditions: at rest (unloaded), under valgus load (50 N) (loaded), and under valgus load with FDS contracted in individual fingers (loaded-contracted). Results: MJD was significantly longer when loaded (5.4 ± 0.4 mm) than unloaded (4.1 ± 0.2 mm, P = .007) or loaded-contracted (4.6 ± 0.3 mm, P = .003) for each finger. When loaded-contracted, MJD differed statistically between the index and ring fingers (P = .03) and between the middle and ring fingers (P = .04). However, the difference between the index and middle fingers was not statistically significant (P = .08).  Conclusions: Individual FDS contraction, particularly of the index and middle fingers contributes most to stabilization against valgus stress. Thus, injury care programs should incorporate FDS exercises of these fingers.


1998 ◽  
Vol 26 (3) ◽  
pp. 420-424 ◽  
Author(s):  
Todd S. Ellenbecker ◽  
Angelo J. Mattalino ◽  
Erik A. Elam ◽  
Roger A. Caplinger

Injuries to the ulnar collateral ligament frequently occur in throwing athletes because of large, repetitive valgus stresses to the elbow during the cocking and acceleration phases of throwing. Identification of injury to this ligament is important in evaluating the throwing elbow. The purpose of this study was to determine whether differences in medial elbow laxity exist between the dominant and nondominant extremities in uninjured baseball pitchers. Forty uninjured professional baseball pitchers were tested bilaterally with a Telos GA-IIE stress radiography device. Joint space width between the trochlea of the humerus and the coronoid process of the ulna was measured on anteroposterior radiographs obtained with no stress applied and with a 15-daN valgus stress. Results showed significant differences between the medial joint space opening of the dominant and nondominant elbows with no stress applied. With stress, the dominant elbow opened 1.20 0.97 mm, while the nondominant elbow opened 0.88 0.55 mm. A significantly greater difference in medial joint space opening between the stressed and unstressed elbows was measured in the dominant elbow compared with the nondominant elbow (0.32 0.42 mm). This study identifies increased medial elbow laxity in the dominant arm in uninjured pitchers.


VCOT Open ◽  
2019 ◽  
Vol 02 (02) ◽  
pp. e44-e49
Author(s):  
Thomas Rohwedder ◽  
Pia Rebentrost ◽  
Peter Böttcher

Abstract Objective The aim of this study was to report the humeroulnar joint kinematics in a dog with medial coronoid process disease (MCPD) before and after dynamic proximal ulnar osteotomy (DPUO). Study Design A 15-month-old female Labrador Retriever with advanced MCPD was treated by DPUO and fragment removal. Bi-planar fluoroscopic kinematography of the affected joint was performed before and 12 weeks after DPUO along with computed tomography. Static axial radioulnar incongruence (sRUI), dynamic relative proximodistal radioulnar motion (dynamic RUI), axial humeroulnar rotation, as well as humeroulnar joint contact at the medial coronoid process (MCP) were calculated. Results Static axial radioulnar incongruence was reduced from 2.3 to 1.5 mm after DPUO but dynamic RUI remained unchanged (0.2 vs. 0.3 mm). Mean humeroulnar rotational amplitude increased from 2.6° (standard deviation 0.4) to 4.5° (standard deviation 2.0). Joint contact area at the MCP became substantially increased as well as broadly distributed among the MCP following DPUO (52.5 vs. 63.0%; p = 0.0012). Conclusion Dynamic proximal ulnar osteotomy failed to restore the radioulnar congruence and increased the humeroulnar rotational instability. No effect was observed on dynamic RUI. Nevertheless, joint contact area at the MCP was increased and became more homogeneously distributed, which might explain the beneficial effect of clinical outcome in this case.


2021 ◽  
Vol 9 (10) ◽  
pp. 232596712110459
Author(s):  
Tomoya Ikuta ◽  
Kanta Yoshioka ◽  
Kanta Matsuzawa ◽  
Sae Maruyama ◽  
Mutsuaki Edama

Background: To investigate the effect of ulnar collateral ligament stretching due to the "creep phenomenon," the effect of accumulating elbow valgus stress on ligaments must be clarified. Purpose: To evaluate the effect of continuous elbow valgus stress on the medial elbow joint space (JS). Study Design: Controlled laboratory study. Methods: The authors measured the JS of the nondominant elbow joints of 20 healthy male university students (age, 21.4 ± 0.5 years; height, 171.4 ± 6.5 cm; weight, 65.7 ± 9.1 kg). The participants were seated with their shoulder at 90° of abduction and external rotation and their elbow at 30° of flexion, and elbow valgus stress was maintained at loads of 30 and 60 N using a Telos stress device. The JS was measured on ultrasound images of the medial elbow joint with the elbow in the start limb position (0 N) and then immediately (0 seconds) and at 60, 120, 180, 240, and 300 seconds after loading. In addition, muscle activity of the pronator teres muscle during JS measurement was monitored to examine the presence or absence of defensive contraction due to pain. Analysis of variance and the Bonferroni method for post hoc testing were used for statistical analysis. Results: No participants showed defensive contractions of the pronator teres. At 30 N, JS was significantly larger 60 seconds after loading compared with immediately after loading ( P = .007). At 60 N, JS was significantly larger after 120 seconds, as the loading time of valgus stress increased, compared with immediately after loading ( P = .002). Conclusion: JS was significantly larger immediately after loading of valgus stress, with an increase in continuous elbow valgus stress after 60 seconds at 30 N and after 120 seconds at 60 N. These results suggest that a creep phenomenon may develop around the soft tissue of the elbow when loaded by a continuous valgus stress. Clinical Relevance: JS is significantly increased by continuous elbow valgus stress.


2020 ◽  
Author(s):  
Shota Hoshika ◽  
Akimoto Nimura ◽  
Norimasa Takahashi ◽  
Hiroyuki Sugaya ◽  
Keiichi Akita

Abstract Background: Flexor digitorum superficialis (FDS) muscle provides dynamic stabilization and medial elbow support for ulnar collateral ligament (UCL). The FDS contraction significantly affects the medial joint distance (MJD) through grip contraction. However, it remains unclear whether FDS activity alone contributes to medial elbow stability, or together with the activation of the flexor digitorum profundus during grip contraction, and which finger’s FDS is the main contributor to elbow stability. We investigated the resistive effects of isolated FDS contraction in individual fingers against valgus stress in the elbow joint using stress ultrasonography (US). Methods: We investigated 17 healthy males (mean age, 27 ± 5 years). Valgus stress US was performed using the Telos device, with the elbow at 30° flexion. MJD was measured for each arm during 3 separate conditions: at rest (unloaded), under valgus load (50 N) (loaded), and under valgus load with FDS contracted in individual fingers (loaded-contracted). Results : MJD was significantly longer when loaded (5.4 ± 0.4 mm) than unloaded (4.1 ± 0.2 mm, P = .007 ) or loaded-contracted (4.6 ± 0.3 mm, P = .003 ) for each finger. When loaded-contracted, MJD differed statistically between the index and ring fingers ( P = .03 ) and between the middle and ring fingers ( P = .04 ). However, the difference between the index and middle fingers was not statistically significant ( P = . 08 ). Conclusion s : Individual FDS contraction, particularly of the index and middle fingers contributes most to stabilization against valgus stress. Thus, injury care programs should incorporate FDS exercises of these fingers.


Sign in / Sign up

Export Citation Format

Share Document