scholarly journals A 3D study on the amplification of regional haze and particle growth by local emissions

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Wei Du ◽  
Lubna Dada ◽  
Jian Zhao ◽  
Xueshun Chen ◽  
Kaspar R. Daellenbach ◽  
...  

AbstractThe role of new particle formation (NPF) events and their contribution to haze formation through subsequent growth in polluted megacities is still controversial. To improve the understanding of the sources, meteorological conditions, and chemistry behind air pollution, we performed simultaneous measurements of aerosol composition and particle number size distributions at ground level and at 260 m in central Beijing, China, during a total of 4 months in 2015–2017. Our measurements show a pronounced decoupling of gas-to-particle conversion between the two heights, leading to different haze processes in terms of particle size distributions and chemical compositions. The development of haze was initiated by the growth of freshly formed particles at both heights, whereas the more severe haze at ground level was connected directly to local primary particles and gaseous precursors leading to higher particle growth rates. The particle growth creates a feedback loop, in which a further development of haze increases the atmospheric stability, which in turn strengthens the persisting apparent decoupling between the two heights and increases the severity of haze at ground level. Moreover, we complemented our field observations with model analyses, which suggest that the growth of NPF-originated particles accounted up to ∼60% of the accumulation mode particles in the Beijing–Tianjin–Hebei area during haze conditions. The results suggest that a reduction in anthropogenic gaseous precursors, suppressing particle growth, is a critical step for alleviating haze although the number concentration of freshly formed particles (3–40 nm) via NPF does not reduce after emission controls.

2017 ◽  
Author(s):  
Wei Du ◽  
Jian Zhao ◽  
Yuying Wang ◽  
Yingjie Zhang ◽  
Qingqing Wang ◽  
...  

Abstract. Despite extensive studies into characterization of particle number size distributions at ground level, real-time measurements above the urban canopy in the megacity of Beijing has never been performed to date. Here we conducted the first simultaneous measurements of size-resolved particle number concentrations at ground level and 260 m in urban Beijing from 22 August to 30 September. Our results showed overall similar temporal variations in number size distributions between ground level and 260 m, yet periods with significant differences were also observed. Particularly, accumulation mode particles were highly correlated (r2 = 0.85) at the two heights while Aitken mode particles presented more differences. Detailed analysis suggests that the vertical differences in number concentrations strongly depended on particle size, and particles with mobility diameter between 100–200 nm generally showed higher concentrations at higher altitudes. Particle growth rates and condensation sinks were also calculated which were 3.2 and 3.6 nm h−1, and 2.8 × 10−2 and 2.9 × 10−2 s−1, at ground level and 260 m, respectively. By linking particle growth with aerosol composition, we found that organics appeared to play an important role in the early stage of the growth (9:00–12:00) while sulfate was also important during the later period. Positive matrix factorization of size-resolved number concentrations identified three common sources at ground level and 260 m including a factor associated with new particle formation and growth events (NPE), and two secondary factors that represent photochemical processing and regional transport, respectively. Cooking emission was found to have a large contribution to small particles, and showed much higher concentration at ground level than 260 m at dinner time. This result has significant implications that investigation of NPE at ground level in megacities needs to consider the influences of local cooking emissions. The impacts of regional emission controls on particle number concentrations were also illustrated. Our results showed that regional emission controls have a dominant impact on accumulation mode particles by decreasing gas precursors and particulate matter loadings, and hence suppressing particle growth. In contrast, the influences on Aitken particles were much smaller due to the enhanced new particle formation (NPF) events.


2017 ◽  
Vol 17 (11) ◽  
pp. 6797-6811 ◽  
Author(s):  
Wei Du ◽  
Jian Zhao ◽  
Yuying Wang ◽  
Yingjie Zhang ◽  
Qingqing Wang ◽  
...  

Abstract. Despite extensive studies into the characterization of particle number size distributions at ground level, real-time measurements above the urban canopy in the megacity of Beijing have never been performed to date. Here we conducted the first simultaneous measurements of size-resolved particle number concentrations at ground level and 260 m in urban Beijing from 22 August to 30 September. Our results showed overall similar temporal variations in number size distributions between ground level and 260 m, yet periods with significant differences were also observed. Particularly, accumulation-mode particles were highly correlated (r2 = 0. 85) at the two heights, while Aitken-mode particles presented more differences. Detailed analysis suggests that the vertical differences in number concentrations strongly depended on particle size, and particles with a mobility diameter between 100 and 200 nm generally showed higher concentrations at higher altitudes. Particle growth rates and condensation sinks were also calculated, which were 3.2 and 3.6 nm h−1, and 2.8  ×  10−2 and 2.9  ×  10−2 s−1, at ground level and 260 m, respectively. By linking particle growth with aerosol composition, we found that organics appeared to play an important role in the early stage of the growth (09:00–12:00 LT) while sulfate was also important during the later period. Positive matrix factorization of size-resolved number concentrations identified three common sources at ground level and 260 m, including a factor associated with new particle formation and growth events (NPEs), and two secondary factors that represent photochemical processing and regional transport. Cooking emission was found to have a large contribution to small particles and showed much higher concentration at ground level than 260 m in the evening. These results imply that investigation of NPEs at ground level in megacities needs to consider the influences of local cooking emissions. The impacts of regional emission controls on particle number concentrations were also illustrated. Our results showed that regional emission controls have a dominant impact on accumulation-mode particles by decreasing gas precursors and particulate matter loadings, and hence suppressing particle growth. In contrast, the influences on Aitken particles were much smaller due to the enhanced new particle formation (NPF) events.


2008 ◽  
Vol 8 (10) ◽  
pp. 2657-2665 ◽  
Author(s):  
A. Laaksonen ◽  
M. Kulmala ◽  
C. D. O'Dowd ◽  
J. Joutsensaari ◽  
P. Vaattovaara ◽  
...  

Abstract. Aerosol physical and chemical properties and trace gas concentrations were measured during the QUEST field campaign in March–April 2003, in Hyytiälä, Finland. Our aim was to understand the role of oxidation products of VOC's such as mono- and sesquiterpenes in atmospheric nucleation events. Particle chemical compositions were measured using the Aerodyne Aerosol Mass Spectrometer, and chemical compositions of aerosol samples collected with low-pressure impactors and a high volume sampler were analysed using a number of techniques. The results indicate that during and after new particle formation, all particles larger than 50 nm in diameter contained similar organic substances that are likely to be mono- and sesquiterpene oxidation products. The oxidation products identified in the high volume samples were shown to be mostly aldehydes. In order to study the composition of particles in the 10–50 nm range, we made use of Tandem Differential Mobility Analyzer results. We found that during nucleation events, both 10 and 50 nm particle growth factors due to uptake of ethanol vapour correlate strongly with gas-phase monoterpene oxidation product (MTOP) concentrations, indicating that the organic constituents of particles smaller than 50 nm in diameter are at least partly similar to those of larger particles. We furthermore showed that particle growth rates during the nucleation events are correlated with the gas-phase MTOP concentrations. This indicates that VOC oxidation products may have a key role in determining the spatial and temporal features of the nucleation events. This conclusion was supported by our aircraft measurements of new 3–10 nm particle concentrations, which showed that the nucleation event on 28 March 2003, started at the ground layer, i.e. near the VOC source, and evolved together with the mixed layer. Furthermore, no new particle formation was detected upwind away from the forest, above the frozen Gulf of Bothnia.


2018 ◽  
Author(s):  
Haichao Wang ◽  
Keding Lu ◽  
Xiaorui Chen ◽  
Qindan Zhu ◽  
Zhijun Wu ◽  
...  

Abstract. Particulate nitrate (pNO3−) is a dominant component of secondary aerosols in urban areas. Therefore, it is critical to explore its formation mechanism to assist with the planning of haze abatement strategies. Simultaneous ground-based and tower-based measurements were conducted during a winter heavy haze episode in urban Beijing, China. We found pNO3− formation via N2O5 heterogeneous uptake was negligible at ground level, due to the presence of high NO concentrations limiting the production of N2O5. In contrast, the contribution from N2O5 uptake was larger at higher altitudes (e.g., > 150 m), which was supported by the observed large total oxidant (NO2 + O3) missing aloft compared with ground level. The nighttime integrated production potential of pNO3− for the higher altitude air mass overhead urban Beijing was estimated to be 50 μg m−3, and enhanced the surface pNO3− significantly with 28 μg m−3 after nocturnal boundary layer broken in the next morning. In this case, the oxidation of NOX to nitrate was maximized once N2O5 uptake coefficient over 0.0017, since N2O5 uptake dominated the fate of NO3 and N2O5 with the presence of large aerosol surface concentrations. These results highlight that pNO3− formation via N2O5 heterogeneous hydrolysis at higher altitude air masses aloft could be an important source for haze formation in the urban airshed during winter time. Accurately describing the formation and development of reactive air masses aloft is a critical task for improving current chemical transport models.


2007 ◽  
Vol 7 (3) ◽  
pp. 7819-7841 ◽  
Author(s):  
A. Laaksonen ◽  
M. Kulmala ◽  
C. D. O'Dowd ◽  
J. Joutsensaari ◽  
P. Vaattovaara ◽  
...  

Abstract. Aerosol physical and chemical properties and trace gas concentrations were measured during the QUEST field campaign in March–April, 2003, in Hyytiälä, Finland. Our aim was to understand the role of oxidation products of VOC's such as mono- and sesquiterpenes in atmospheric nucleation events. Particle chemical compositions were measured using the Aerodyne Aerosol Mass Spectrometer, and chemical compositions of aerosol samples collected with low-pressure impactors and a high volume sampler were analysed using a number of techniques. The results indicate that during and after new particle formation, all particles larger than 50 nm in diameter contained similar organic substances that are likely to be mono- and sesquiterpene oxidation products. The oxidation products identified in the high volume samples were shown to be mostly aldehydes. In order to study the composition of particles in the 10–50 nm range, we made use of Tandem Differential Mobility Analyzer results. We found that during nucleation events, both 10 and 50 nm particle growth factors due to uptake of ethanol vapour correlate strongly with gas-phase monoterpene oxidation product (MTOP) concentrations, indicating that the organic constituents of particles smaller than 50 nm in diameter are at least partly similar to those of larger particles. We furthermore showed that particle growth rates during the nucleation events are correlated with the gas-phase MTOP concentrations. This indicates that VOC oxidation products may have a key role in determining the spatial and temporal features of the nucleation events. This conclusion was supported by our aircraft measurements of new 3–10 nm particle concentrations, which showed that the nucleation event on 28 March 2003, started at the ground layer, i.e. near the VOC source, and evolved together with the mixed layer. Furthermore, no new particle formation was detected upwind away from the forest, above the frozen Gulf of Bothnia.


2013 ◽  
Vol 13 (9) ◽  
pp. 4577-4592 ◽  
Author(s):  
Y. L. Sun ◽  
Z. F. Wang ◽  
P. Q. Fu ◽  
T. Yang ◽  
Q. Jiang ◽  
...  

Abstract. Air pollution is a major environmental concern during all seasons in the megacity of Beijing, China. Here we present the results from a winter study that was conducted from 21 November 2011 to 20 January 2012 with an Aerodyne Aerosol Chemical Speciation Monitor (ACSM) and various collocated instruments. The non-refractory submicron aerosol (NR-PM1) species vary dramatically with clean periods and pollution episodes alternating frequently. Compared to summer, wintertime submicron aerosols show much enhanced organics and chloride, which on average account for 52% and 5%, respectively, of the total NR-PM1 mass. All NR-PM1 species show quite different diurnal behaviors between summer and winter. For example, the wintertime nitrate presents a gradual increase during daytime and correlates well with secondary organic aerosol (OA), indicating a dominant role of photochemical production over gas–particle partitioning. Positive matrix factorization was performed on ACSM OA mass spectra, and identified three primary OA (POA) factors, i.e., hydrocarbon-like OA (HOA), cooking OA (COA), and coal combustion OA (CCOA), and one secondary factor, i.e., oxygenated OA (OOA). The POA dominates OA during wintertime, contributing 69%, with the other 31% being SOA. Further, all POA components show pronounced diurnal cycles with the highest concentrations occurring at nighttime. CCOA is the largest primary source during the heating season, on average accounting for 33% of OA and 17% of NR-PM1. CCOA also plays a significant role in chemically resolved particulate matter (PM) pollution as its mass contribution increases linearly as a function of NR-PM1 mass loadings. The SOA, however, presents a reverse trend, which might indicate the limited SOA formation during high PM pollution episodes in winter. The effects of meteorology on PM pollution and aerosol processing were also explored. In particular, the sulfate mass is largely enhanced during periods with high humidity because of fog processing of high concentration of precursor SO2. In addition, the increased traffic-related HOA emission at low temperature is also highlighted.


2008 ◽  
Vol 8 (11) ◽  
pp. 2859-2867 ◽  
Author(s):  
I. K. Ortega ◽  
T. Kurtén ◽  
H. Vehkamäki ◽  
M. Kulmala

Abstract. We have developed a new multi-step strategy for quantum chemical calculations on atmospherically relevant cluster structures that makes calculation for large clusters affordable with a good accuracy-to-computational effort ratio. We have applied this strategy to evaluate the relevance of ternary ion induced nucleation; we have also performed calculations for neutral ternary nucleation for comparison. The results for neutral ternary nucleation agree with previous results, and confirm the important role of ammonia in enhancing the growth of sulfuric acid clusters. On the other hand, we have found that ammonia does not enhance the growth of ionic sulfuric acid clusters. The results also confirm that ion-induced nucleation is a barrierless process at high altitudes, but at ground level there exists a barrier due to the presence of a local minimum on the free energy surface.


Sign in / Sign up

Export Citation Format

Share Document