npj Climate and Atmospheric Science
Latest Publications


TOTAL DOCUMENTS

220
(FIVE YEARS 165)

H-INDEX

18
(FIVE YEARS 11)

Published By Springer Nature

2397-3722

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
N. N. Ridder ◽  
A. M. Ukkola ◽  
A. J. Pitman ◽  
S. E. Perkins-Kirkpatrick

AbstractWhile compound weather and climate events (CEs) can lead to significant socioeconomic consequences, their response to climate change is mostly unexplored. We report the first multi-model assessment of future changes in return periods for the co-occurrence of heatwaves and drought, and extreme winds and precipitation based on the Coupled Model Intercomparison Project (CMIP6) and three emission scenarios. Extreme winds and precipitation CEs occur more frequently in many regions, particularly under higher emissions. Heatwaves and drought occur more frequently everywhere under all emission scenarios examined. For each CMIP6 model, we derive a skill score for simulating CEs. Models with higher skill in simulating historical CEs project smaller increases in the number of heatwaves and drought in Eurasia, but larger numbers of strong winds and heavy precipitation CEs everywhere for all emission scenarios. This result is partly masked if the whole CMIP6 ensemble is used, pointing to the considerable value in further improvements in climate models.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Manish K. Joshi ◽  
Archana Rai ◽  
Ashwini Kulkarni

AbstractIn the present study, a sea surface temperature-based index named global-scale interdecadal variability (GIV) encompassing the combined variability of Atlantic multidecadal oscillation (AMO) and interdecadal Pacific oscillation (IPO) has been proposed. The warm phase of GIV exhibits a “cold AMO-like” pattern in the Atlantic basin and a “warm IPO-like” pattern in the Pacific basin. About 84% (R ~−0.914) of Sahelian and 42% (R ~−0.647) of Indian rainfall’s temporal variance is attributed to GIV, showing substantial improvement compared to the variance explained by AMO and IPO individually. The physical mechanism for GIV-rainfall teleconnection is related to a modification of the Walker circulation. Although there is a substantial degree of uncertainty in the current generation of state-of-the-art climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), some still replicate the observed GIV’s spatial structure, its teleconnection, and associated physical mechanism. The results presented herein advance our knowledge about rainfall’s interdecadal variability and have imperative ramifications for developing skillful decadal predictions.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Rei Chemke

AbstractBy modulating the distribution of heat, precipitation and moisture, the Hadley cell holds large climate impacts at low and subtropical latitudes. Here we show that the interannual variability of the annual mean Hadley cell strength is ~ 30% less in the Northern Hemisphere than in the Southern Hemisphere. Using a hierarchy of ocean coupling experiments, we find that the smaller variability in the Northern Hemisphere stems from dynamic ocean coupling, which has opposite effects on the variability of the Hadley cell in the Southern and Northern Hemispheres; it acts to increase the variability in the Southern Hemisphere, which is inversely linked to equatorial upwelling, and reduce the variability in the Northern Hemisphere, which shows a direct relation with the subtropical wind-driven overturning circulation. The important role of ocean coupling in modulating the tropical circulation suggests that further investigation should be carried out to better understand the climate impacts of ocean-atmosphere coupling at low latitudes.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Dougal T. Squire ◽  
Doug Richardson ◽  
James S. Risbey ◽  
Amanda S. Black ◽  
Vassili Kitsios ◽  
...  

AbstractBetween June 2019 and March 2020, thousands of wildfires spread devastation across Australia at the tragic cost of many lives, vast areas of burnt forest, and estimated economic losses upward of AU$100 billion. Exceptionally hot and dry weather conditions, and preceding years of severe drought across Australia, contributed to the severity of the wildfires. Here we present analysis of a very large ensemble of initialized climate simulations to assess the likelihood of the concurrent drought and fire-weather conditions experienced at that time. We focus on a large region in southeast Australia where these fires were most widespread and define two indices to quantify the susceptibility to fire from drought and fire weather. Both indices were unprecedented in the observed record in 2019. We find that the likelihood of experiencing such extreme susceptibility to fire in the current climate was 0.5%, equivalent to a 200 year return period. The conditional probability is many times higher than this when we account for the states of key climate modes that impact Australian weather and climate. Drought and fire-weather conditions more extreme than those experienced in 2019 are also possible in the current climate.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Daniel F. Balting ◽  
Amir AghaKouchak ◽  
Gerrit Lohmann ◽  
Monica Ionita

AbstractDrought frequency and severity are projected to increase in the future, but the changes are expected to be unevenly distributed across the globe. Based on multi-model simulations under three different future emissions and shared socioeconomic pathways, we show that a significant drought intensification is expected in dry regions, whereby the severity depends on greenhouse gas emissions and development pathways. The drought hotspots are located in the sub-tropical regions where a moderate to extreme summer drought in today’s climate is expected to become a new normal by the end of the 21st century under the warmest scenario. On average, under the warmest future scenario, the drought occurrence rate is projected to be 100% higher than that of the low emission scenario. Further, for the regions which are currently less affected by long-lasting droughts, such as the European continent, climate models indicate a significant increase in drought occurrence probability under the warmest future scenario.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Kalliopi Violaki ◽  
Athanasios Nenes ◽  
Maria Tsagkaraki ◽  
Marco Paglione ◽  
Stéphanie Jacquet ◽  
...  

AbstractSeveral studies assessed the impact of inorganic P in fertilizing oligotrophic areas, however, the importance of organic P in such fertilization processes received far less attention. In this study, the amount and origin of organic P delivered to the eastern Mediterranean Sea were characterized in atmospheric particles using the positive matrix factorization model (PMF). Phospholipids together with other chemical compounds (sugars, metals) were used as tracers in PMF. The model revealed that dominant sources of organic P are bioaerosols and dust. The amount of organic P from bioaerosols (~4 Gg P y−1) is similar to the amount of soluble inorganic P originating from dust aerosols; this is especially true during highly stratified periods when surface waters are strongly P-limited. The deposition of organic P from bioaerosols can constitute a considerable flux of bioavailable P—even during periods of dust episodes, implying that airborne biological particles can potentially fertilize marine ecosystems.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Rongfan Chai ◽  
Jiafu Mao ◽  
Haishan Chen ◽  
Yaoping Wang ◽  
Xiaoying Shi ◽  
...  

AbstractWidespread aridification of the land surface causes substantial environmental challenges and is generally well documented. However, the mechanisms underlying increased aridity remain relatively underexplored. Here, we investigated the anthropogenic and natural factors affecting long-term global aridity changes using multisource observation-based aridity index, factorial simulations from the Coupled Model Intercomparison Project phase 6 (CMIP6), and rigorous detection and attribution (D&A) methods. Our study found that anthropogenic forcings, mainly rising greenhouse gas emissions (GHGE) and aerosols, caused the increased aridification of the globe and each hemisphere with high statistical confidence for 1965–2014; the GHGE contributed to drying trends, whereas the aerosol emissions led to wetting tendencies; moreover, the bias-corrected CMIP6 future aridity index based on the scaling factors from optimal D&A demonstrated greater aridification than the original simulations. These findings highlight the dominant role of human effects on increasing aridification at broad spatial scales, implying future reductions in aridity will rely primarily on the GHGE mitigation.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Stephen Cropper ◽  
Kurt Solander ◽  
Brent D. Newman ◽  
Obbe A. Tuinenburg ◽  
Arie Staal ◽  
...  

AbstractPrecipitation recycling is essential to sustaining regional ecosystems and water supplies, and it is impacted by land development and climate change. This is especially true in the tropics, where dense vegetation greatly influences recycling. Unfortunately, large-scale models of recycling often exhibit high uncertainty, complicating efforts to estimate recycling. Here, we examine how deuterium excess (d-excess), a stable-isotope quantity sensitive to recycling effects, acts as an observational proxy for recycling. While past studies have connected variability in d-excess to precipitation origins at local or regional scales, our study leverages >3000 precipitation isotope samples to quantitatively compare d-excess against three contemporary recycling models across the global tropics. Using rank-correlation, we find statistically significant agreement ($$\bar \tau = 0.52$$ τ ¯ = 0.52 to $$0.70$$ 0.70 ) between tropical d-excess and recycling that is strongly mediated by seasonal precipitation, vegetation density, and scale mismatch. Our results detail the complex relationship between d-excess and precipitation recycling, suggesting avenues for further investigation.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Vimal Mishra ◽  
Saran Aadhar

AbstractConsecutive failures in the summer monsoon rainfall led to widespread and severe droughts with profound implications for agricultural activities in India. However, the likelihood of successive megadroughts in India’s past and future climate remain poorly understood. Using Palmer Drought Severity Index (PDSI) from the Monsoon Asia Drought Atlas (MADA), we show that the major famines that affected millions of people during 1200–2018 were linked with summer monsoon droughts. Four megadroughts covering more than 40% of the country occurred for two consecutive summer monsoon seasons during 1200–2018. The most recent and severe megadrought occurred in 2002–2003. Simulations from the Community Earth System Model (CESM) for the last millennium (850–2005) ensemble (LME) show that the likelihood of two and three-year consecutive megadroughts during the summer monsoon is about 0.7 and 0.3 events per 100 years, respectively. Large ensemble simulations from CESM (CESM-LE) show a decline in the frequency of megadroughts in the future. Summer monsoon megadroughts are strongly associated with the warm sea surface temperature (SST) anomalies over the Pacific Ocean in the past and future climate. Substantial warming under the projected future climate can cause megadroughts under near-normal precipitation during the summer monsoon season. Despite the projected decline in the likelihood of the summer monsoon megadroughts under the warming climate, megadroughts in the future can have considerable implications for India’s food production and water availability.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Zhuoran Luo ◽  
Jiahong Liu ◽  
Yongxiang Zhang ◽  
Jinjun Zhou ◽  
Weiwei Shao ◽  
...  

AbstractUrbanization has resulted in dry/wet island effects in built-up areas. Compared to the limited number of observational datasets, simulations can provide data with richer spatial distribution, thereby proving to be more helpful for revealing the spatial distribution of dry/wet islands. This study simulated dry/wet island effects during typical summer and winter conditions in Beijing by coupling the Artificial Water Dissipation Urban Canopy Model with the Weather Research and Forecasting model. Observations of relative humidity, absolute humidity, and temperature from weather stations in Beijing were used to verify the model. The results showed that in 2020, Beijing was prone to be a dry island during summer, with the relative humidity approximately 5–10% lower than the surrounding suburbs. The dry island effect was not obvious in winter, and Beijing tended to be a wet island. The influence of artificial water dissipation on dry/wet islands is higher in winter than in summer. By considering the water vapor from artificial water dissipation, humidity in urban areas can be simulated more accurately.


Sign in / Sign up

Export Citation Format

Share Document