scholarly journals Cryo-electron tomography of cardiac myofibrils reveals a 3D lattice spring within the Z-discs

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Toshiyuki Oda ◽  
Haruaki Yanagisawa

Abstract The Z-disc forms a boundary between sarcomeres, which constitute structural and functional units of striated muscle tissue. Actin filaments from adjacent sarcomeres are cross-bridged by α-actinin in the Z-disc, allowing transmission of tension across the myofibril. Despite decades of studies, the 3D structure of Z-disc has remained elusive due to the limited resolution of conventional electron microscopy. Here, we observed porcine cardiac myofibrils using cryo-electron tomography and reconstructed the 3D structures of the actin-actinin cross-bridging complexes within the Z-discs in relaxed and activated states. We found that the α-actinin dimers showed contraction-dependent swinging and sliding motions in response to a global twist in the F-actin lattice. Our observation suggests that the actin-actinin complex constitutes a molecular lattice spring, which maintains the integrity of the Z-disc during the muscle contraction cycle.

2020 ◽  
Author(s):  
Toshiyuki Oda ◽  
Haruaki Yanagisawa

AbstractThe Z-disc forms a boundary between sarcomeres, which constitute structural and functional units of striated muscle tissue. Actin filaments from adjacent sarcomeres are cross-bridged by α-actinin in the Z-disc, allowing transmission of tension across the myofibril. Despite decades of studies, the 3D structure of Z-disc has been elusive due to the limited resolution of conventional electron microscopy. Here, we observed porcine cardiac myofibrils using cryo-electron tomography and reconstructed the 3D structures of the actinactinin cross-bridging complexes within the Z-discs in relaxed and activated states. We found that the α-actinin showed a contraction-induced swing motion along with a global twist in the actin lattice. Our observation suggests that the elasticity and the integrity of the Z-disc during the muscle contraction cycle are maintained by the structural flexibility within the actin-actinin complex.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Swetha Vijayakrishnan ◽  
Marion McElwee ◽  
Colin Loney ◽  
Frazer Rixon ◽  
David Bhella

Abstract Cryo electron microscopy (cryo-EM), a key method for structure determination involves imaging purified material embedded in vitreous ice. Images are then computationally processed to obtain three-dimensional structures approaching atomic resolution. There is increasing interest in extending structural studies by cryo-EM into the cell, where biological structures and processes may be imaged in context. The limited penetrating power of electrons prevents imaging of thick specimens (> 500 nm) however. Cryo-sectioning methods employed to overcome this are technically challenging, subject to artefacts or involve specialised and costly equipment. Here we describe the first structure of herpesvirus capsids determined by sub-tomogram averaging from nuclei of eukaryotic cells, achieved by cryo-electron tomography (cryo-ET) of re-vitrified cell sections prepared using the Tokuyasu method. Our reconstructions confirm that the capsid associated tegument complex is present on capsids prior to nuclear egress. We demonstrate that this method is suited to both 3D structure determination and correlative light/electron microscopy, thus expanding the scope of cryogenic cellular imaging.


2019 ◽  
Vol 116 (31) ◽  
pp. 15534-15539 ◽  
Author(s):  
Thomas Burgoyne ◽  
John M. Heumann ◽  
Edward P. Morris ◽  
Carlo Knupp ◽  
Jun Liu ◽  
...  

Striated muscle enables movement in all animals by the contraction of myriads of sarcomeres joined end to end by the Z-bands. The contraction is due to tension generated in each sarcomere between overlapping arrays of actin and myosin filaments. At the Z-band, actin filaments from adjoining sarcomeres overlap and are cross-linked in a regular pattern mainly by the protein α-actinin. The Z-band is dynamic, reflected by the 2 regular patterns seen in transverse section electron micrographs; the so-called small-square and basketweave forms. Although these forms are attributed, respectively, to relaxed and actively contracting muscles, the basketweave form occurs in certain relaxed muscles as in the muscle studied here. We used electron tomography and subtomogram averaging to derive the 3D structure of the Z-band in the swimbladder sonic muscle of type I male plainfin midshipman fish (Porichthys notatus), into which we docked the crystallographic structures of actin and α-actinin. The α-actinin links run diagonally between connected pairs of antiparallel actin filaments and are oriented at an angle of about 25° away from the actin filament axes. The slightly curved and flattened structure of the α-actinin rod has a distinct fit into the map. The Z-band model provides a detailed understanding of the role of α-actinin in transmitting tension between actin filaments in adjoining sarcomeres.


Author(s):  
Petra Kiesel ◽  
Gonzalo Alvarez Viar ◽  
Nikolai Tsoy ◽  
Riccardo Maraspini ◽  
Alf Honigmann ◽  
...  

AbstractPrimary cilia are microtubule-based organelles involved in key signaling and sensing processes in eukaryotic cells. Unlike motile cilia, which have been thoroughly studied, the structure and the composition of primary cilia remain largely unexplored despite their fundamental role in development and homeostasis. They have for long been falsely regarded as simplified versions of motile cilia because they lack distinctive elements such as dynein arms, radial spokes, and central pair complex. However, revealing the detailed molecular composition and 3D structure of primary cilia is necessary in order to understand the mechanisms that govern their functions. Such structural investigations are so far being precluded by the challenging preparation of primary cilia for cryo-electron microscopy. Here, we developed an enabling method for investigating the structure of primary cilia at molecular resolution by cryo-electron tomography. We show that the well-known “9+0” arrangement of microtubule doublets is present only at the base of the primary cilium. A few microns away from the base the ciliary architecture changes into an unstructured bundle of EB1-decorated microtubule singlets and some actin filaments. Our results suggest the existence of a previously unobserved crosstalk between actin filaments and microtubules in the primary cilium. Our work provides unprecedented insights into the molecular structure of primary cilia and a general framework for uncovering their molecular composition and function in health and disease. This opens up new possibilities to study aspects of this important organelle that have so far been out of reach.


2020 ◽  
Author(s):  
Swetha Vijayakrishnan ◽  
Marion McElwee ◽  
Colin Loney ◽  
Frazer Rixon ◽  
David Bhella

AbstractCryo electron microscopy (cryo-EM), a key method for structure determination involves imaging purified material embedded in vitreous ice. Images are then computationally processed to obtain three-dimensional structures at atomic resolution. There is increasing interest in extending structural studies by cryo-EM into the cell, where biological structures and processes may be imaged in context. The limited penetrating power of electrons prevents imaging of thick specimens (>500 nm) however. Cryo-sectioning methods employed to overcome this are technically challenging, subject to artefacts or involve specialised equipment of limited availability. Here we describe the first structure of herpesvirus capsids determined by sub-tomogram averaging from nuclei of eukaryotic cells, achieved by cryo-electron tomography (cryo-ET) of re-vitrified cell sections prepared using the Tokuyasu method. Our reconstructions reveal that the capsid associated tegument complex is present on capsids prior to nuclear egress. We show that this approach to cryogenic imaging of cells is suited to both correlative light/electron microscopy and 3D structure determination.


2014 ◽  
Vol 20 (4) ◽  
pp. 1180-1187 ◽  
Author(s):  
Guo-Bin Hu

AbstractEukaryotes rely on mitochondrial division to guarantee that each new generation of cells acquires an adequate number of mitochondria. Mitochondrial division has long been thought to occur by binary fission and, more recently, evidence has supported the idea that binary fission is mediated by dynamin-related protein (Drp1) and the endoplasmic reticulum. However, studies to date have depended on fluorescence microscopy and conventional electron microscopy. Here, we utilize whole cell cryo-electron tomography to visualize mitochondrial division in frozen hydrated intact HeLa cells. We observe a large number of relatively small mitochondria protruding from and connected to large mitochondria or mitochondrial networks. Therefore, this study provides evidence that mitochondria divide by budding.


2012 ◽  
Vol 180 (2) ◽  
pp. 318-326 ◽  
Author(s):  
Ke Wang ◽  
Korrinn Strunk ◽  
Gongpu Zhao ◽  
Jennifer L. Gray ◽  
Peijun Zhang

2021 ◽  
Vol 120 (3) ◽  
pp. 173a
Author(s):  
Leeya Engel ◽  
Claudia G. Vasquez ◽  
Elizabeth A. Montabana ◽  
Belle M. Sow ◽  
Marcin P. Walkiewicz ◽  
...  

2020 ◽  
Vol 26 (3) ◽  
pp. 413-418
Author(s):  
Jamie S. Depelteau ◽  
Gert Koning ◽  
Wen Yang ◽  
Ariane Briegel

AbstractVisualizing biological structures and cellular processes in their native state is a major goal of many scientific laboratories. In the past 20 years, the technique of preserving samples by vitrification has greatly expanded, specifically for use in cryogenic electron microscopy (cryo-EM). Here, we report on improvements in the design and use of a portable manual cryogenic plunge freezer that is intended for use in laboratories that are not equipped for the cryopreservation of samples. The construction of the instrument is economical, can be produced by a local machine shop without specialized equipment, and lowers the entry barriers for newcomers with a reliable alternative to costly commercial equipment. The improved design allows for successful freezing of isolated proteins for single particle analysis as well as bacterial cells for cryo-electron tomography. With this instrument, groups will be able to prepare vitreous samples whenever and wherever necessary, which can then be imaged at local or national cryo-EM facilities.


Sign in / Sign up

Export Citation Format

Share Document