scholarly journals Structural analysis of the SRP Alu domain from Plasmodium falciparum reveals a non-canonical open conformation

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Komal Soni ◽  
Georg Kempf ◽  
Karen Manalastas-Cantos ◽  
Astrid Hendricks ◽  
Dirk Flemming ◽  
...  

AbstractThe eukaryotic signal recognition particle (SRP) contains an Alu domain, which docks into the factor binding site of translating ribosomes and confers translation retardation. The canonical Alu domain consists of the SRP9/14 protein heterodimer and a tRNA-like folded Alu RNA that adopts a strictly ‘closed’ conformation involving a loop-loop pseudoknot. Here, we study the structure of the Alu domain from Plasmodium falciparum (PfAlu), a divergent apicomplexan protozoan that causes human malaria. Using NMR, SAXS and cryo-EM analyses, we show that, in contrast to its prokaryotic and eukaryotic counterparts, the PfAlu domain adopts an ‘open’ Y-shaped conformation. We show that cytoplasmic P. falciparum ribosomes are non-discriminative and recognize both the open PfAlu and closed human Alu domains with nanomolar affinity. In contrast, human ribosomes do not provide high affinity binding sites for either of the Alu domains. Our analyses extend the structural database of Alu domains to the protozoan species and reveal species-specific differences in the recognition of SRP Alu domains by ribosomes.

2006 ◽  
Vol 174 (5) ◽  
pp. 715-724 ◽  
Author(s):  
Sandra Angelini ◽  
Diana Boy ◽  
Emile Schiltz ◽  
Hans-Georg Koch

Cotranslational protein targeting in bacteria is mediated by the signal recognition particle (SRP) and FtsY, the bacterial SRP receptor (SR). FtsY is homologous to the SRα subunit of eukaryotes, which is tethered to the membrane via its interaction with the membrane-integral SRβ subunit. Despite the lack of a membrane-anchoring subunit, 30% of FtsY in Escherichia coli are found stably associated with the cytoplasmic membrane. However, the mechanisms that are involved in this membrane association are only poorly understood. Our data indicate that membrane association of FtsY involves two distinct binding sites and that binding to both sites is stabilized by blocking its GTPase activity. Binding to the first site requires only the NG-domain of FtsY and confers protease protection to FtsY. Importantly, the SecY translocon provides the second binding site, to which FtsY binds to form a carbonate-resistant 400-kD FtsY–SecY translocon complex. This interaction is stabilized by the N-terminal A-domain of FtsY, which probably serves as a transient lipid anchor.


2006 ◽  
Vol 17 (9) ◽  
pp. 3860-3869 ◽  
Author(s):  
Julia Schaletzky ◽  
Tom A. Rapoport

We have addressed how ribosome-nascent chain complexes (RNCs), associated with the signal recognition particle (SRP), can be targeted to Sec61 translocation channels of the endoplasmic reticulum (ER) membrane when all binding sites are occupied by nontranslating ribosomes. These competing ribosomes are known to be bound with high affinity to tetramers of the Sec61 complex. We found that the membrane binding of RNC–SRP complexes does not require or cause the dissociation of prebound nontranslating ribosomes, a process that is extremely slow. SRP and its receptor target RNCs to a free population of Sec61 complex, which associates with nontranslating ribosomes only weakly and is conformationally different from the population of ribosome-bound Sec61 complex. Taking into account recent structural data, we propose a model in which SRP and its receptor target RNCs to a Sec61 subpopulation of monomeric or dimeric state. This could explain how RNC–SRP complexes can overcome the competition by nontranslating ribosomes.


1997 ◽  
Vol 16 (13) ◽  
pp. 3757-3766 ◽  
Author(s):  
Darcy E.A. Birse ◽  
Ulrike Kapp ◽  
Katharina Strub ◽  
Stephen Cusack ◽  
Anders Åberg

Blood ◽  
2010 ◽  
Vol 116 (23) ◽  
pp. 5050-5059 ◽  
Author(s):  
Jieqing Zhu ◽  
Jianghai Zhu ◽  
Ana Negri ◽  
Davide Provasi ◽  
Marta Filizola ◽  
...  

Abstract The platelet integrin αIIbβ3 is essential for hemostasis and thrombosis through its binding of adhesive plasma proteins. We have determined crystal structures of the αIIbβ3 headpiece in the absence of ligand and after soaking in RUC-1, a novel small molecule antagonist. In the absence of ligand, the αIIbβ3 headpiece is in a closed conformation, distinct from the open conformation visualized in presence of Arg-Gly-Asp (RGD) antagonists. In contrast to RGD antagonists, RUC-1 binds only to the αIIb subunit. Molecular dynamics revealed nearly identical binding. Two species-specific residues, αIIb Y190 and αIIb D232, in the RUC-1 binding site were confirmed as important by mutagenesis. In sharp contrast to RGD-based antagonists, RUC-1 did not induce αIIbβ3 to adopt an open conformation, as determined by gel filtration and dynamic light scattering. These studies provide insights into the factors that regulate integrin headpiece opening, and demonstrate the molecular basis for a novel mechanism of integrin antagonism.


Sign in / Sign up

Export Citation Format

Share Document