scholarly journals Dynamical decoupling of laser phase noise in compound atomic clocks

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Sören Dörscher ◽  
Ali Al-Masoudi ◽  
Marcin Bober ◽  
Roman Schwarz ◽  
Richard Hobson ◽  
...  

Abstract The frequency stability of many optical atomic clocks is limited by the coherence of their local oscillator. Here, we present a measurement protocol that overcomes the laser coherence limit. It relies on engineered dynamical decoupling of laser phase noise and near-synchronous interrogation of two clocks. One clock coarsely tracks the laser phase using dynamical decoupling; the other refines this estimate using a high-resolution phase measurement. While the former needs to have a high signal-to-noise ratio, the latter clock may operate with any number of particles. The protocol effectively enables minute-long Ramsey interrogation for coherence times of few seconds as provided by the current best ultrastable laser systems. We demonstrate implementation of the protocol in a realistic proof-of-principle experiment, where we interrogate for 0.5 s at a laser coherence time of 77 ms. Here, a single lattice clock is used to emulate synchronous interrogation of two separate clocks in the presence of artificial laser frequency noise. We discuss the frequency instability of a single-ion clock that would result from using the protocol for stabilisation, under these conditions and for minute-long interrogation, and find expected instabilities of σy(τ) = 8 × 10−16(τ/s)−1/2 and σy(τ) = 5 × 10−17(τ/s)−1/2, respectively.

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Manchao Zhang ◽  
Yi Xie ◽  
Jie Zhang ◽  
Weichen Wang ◽  
Chunwang Wu ◽  
...  

2020 ◽  
Vol 28 (26) ◽  
pp. 39606
Author(s):  
Gavin N. West ◽  
William Loh ◽  
Dave Kharas ◽  
Rajeev J. Ram

2011 ◽  
Vol 36 (5) ◽  
pp. 672 ◽  
Author(s):  
Danielle M. R. Wuchenich ◽  
Timothy T.-Y. Lam ◽  
Jong H. Chow ◽  
David E. McClelland ◽  
Daniel A. Shaddock

2020 ◽  
Vol 18 (3) ◽  
pp. 030201
Author(s):  
Xiaotong Chen ◽  
Yanyi Jiang ◽  
Bo Li ◽  
Hongfu Yu ◽  
Haifeng Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document