scholarly journals Author Correction: Controlled creation and decay of singly-quantized vortices in a polar magnetic phase

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Y. Xiao ◽  
M. O. Borgh ◽  
L. S. Weiss ◽  
A. A. Blinova ◽  
J. Ruostekoski ◽  
...  
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Y. Xiao ◽  
M. O. Borgh ◽  
L. S. Weiss ◽  
A. A. Blinova ◽  
J. Ruostekoski ◽  
...  

AbstractQuantized vortices appear in physical systems from superfluids and superconductors to liquid crystals and high energy physics. Unlike their scalar cousins, superfluids with complex internal structure can exhibit rich dynamics of decay and even fractional vorticity. Here, we experimentally and theoretically explore the creation and time evolution of vortex lines in the polar magnetic phase of a trapped spin-1 87Rb Bose–Einstein condensate. A process of phase-imprinting a nonsingular vortex, its decay into a pair of singular spinor vortices, and a rapid exchange of magnetic phases creates a pair of three-dimensional, singular singly-quantized vortex lines with core regions that are filled with atoms in the ferromagnetic phase. Atomic interactions guide the subsequent vortex dynamics, leading to core structures that suggest the decay of the singly-quantized vortices into half-quantum vortices.


2007 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
C.W. Kim ◽  
Y.H. Kim ◽  
H.G. Cha ◽  
D.K. Lee ◽  
Y.S. Kang

1988 ◽  
Vol 49 (C8) ◽  
pp. C8-479-C8-480 ◽  
Author(s):  
M. Kuznietz ◽  
P. Burlet ◽  
J. Rossat-Mignod ◽  
O. Vogt ◽  
K. Mattenberger ◽  
...  

1993 ◽  
Vol 07 (01n03) ◽  
pp. 867-870 ◽  
Author(s):  
H. SHIRAISHI ◽  
T. HORI ◽  
Y. YAMAGUCHI ◽  
S. FUNAHASHI ◽  
K. KANEMATSU

The magnetic susceptibility measurements have been made on antiferromagnetic compounds Mn1–xFexSn2 and the magnetic phase diagram was illustrated. The high temperature magnetic phases I and III, major phases, were analyzed on the basis of molecular field theory and explained the change of magnetic structure I⇌III occured at x≈0.8.


RSC Advances ◽  
2021 ◽  
Vol 11 (41) ◽  
pp. 25664-25676
Author(s):  
Abir Hadded ◽  
Jalel Massoudi ◽  
Sirine Gharbi ◽  
Essebti Dhahri ◽  
A. Tozri ◽  
...  

The present work reports a detailed study of the spin dynamics, magnetocaloric effect and critical behaviour near the magnetic phase transition temperature, of a ferrimagnetic spinel Cu1.5Mn1.5O4.


Sign in / Sign up

Export Citation Format

Share Document