The Diesel Engine

1915 ◽  
Vol 80 (2085supp) ◽  
pp. 394-395
Author(s):  
C. Kloos
Keyword(s):  
Author(s):  
Serhii Kovbasenko ◽  
Andriy Holyk ◽  
Serhii Hutarevych

The features of an advanced mathematical model of motion of a truck with a diesel engine operating on the diesel and diesel gas cycles are presented in the article. As a result of calculations using the mathematical model, a decrease in total mass emissions as a result of carbon monoxide emissions is observed due to a decrease in emissions of nitrogen oxides and emissions of soot in the diesel gas cycle compared to the diesel cycle. The mathematical model of a motion of a truck on a city driving cycle according to GOST 20306-90 allows to study the fuel-economic, environmental and energy indicators of a diesel and diesel gas vehicle. The results of the calculations on the mathematical model will make it possible to conclude on the feasibility of converting diesel vehicles to using compressed natural gas. Object of the study – the fuel-economic, environmental and energy performance diesel engine that runs on dual fuel system using CNG. Purpose of the study – study of changes in fuel, economic, environmental and energy performance of vehicles with diesel engines operating on diesel and diesel gas cycles, according to urban driving cycle modes. Method of the study – calculations on a mathematical model and comparison of results with road tests. Bench and road tests, results of calculations on the mathematical model of motion of a truck with diesel, working on diesel and diesel gas cycles, show the improvement of environmental performance of diesel vehicles during the converting to compressed natural gas in operation. Improvement of environmental performance is obtained mainly through the reduction of soot emissions and nitrogen oxides emissions from diesel gas cycle operations compared to diesel cycle operations. The results of the article can be used to further develop dual fuel system using CNG. Keywords: diesel engine, diesel gas engine, CNG


Author(s):  
M. A. Adzmi ◽  
A. Abdullah ◽  
Z. Abdullah ◽  
A. G. Mrwan

Evaluation of combustion characteristic, engine performances and exhaust emissions of nanoparticles blended in palm oil methyl ester (POME) was conducted in this experiment using a single-cylinder diesel engine. Nanoparticles used was aluminium oxide (Al2O3) and silicon dioxide (SiO2) with a portion of 50 ppm and 100 ppm. SiO2 and Al2O3 were blended in POME and labelled as PS50, PS100 and PA50, PA100, respectively. The data results for PS and PA fuel were compared to POME test fuel. Single cylinder diesel engine YANMAR TF120M attached with DEWESoft data acquisition module (DAQ) model SIRIUSi-HS was used in this experiment. Various engine loads of zero, 7 N.m, 14 Nm, 21 N.m and 28 N.m at a constant engine speed of 1800 rpm were applied during engine testing. Results for each fuel were obtained by calculating the average three times repetition of engine testing. Findings show that the highest maximum pressure of nanoparticles fuel increase by 16.3% compared to POME test fuel. Other than that, the engine peak torque and engine power show a significant increase by 43% and 44%, respectively, recorded during the PS50 fuel test. Meanwhile, emissions of nanoparticles fuel show a large decrease by 10% of oxide of nitrogen (NOx), 6.3% reduction of carbon dioxide (CO2) and a slight decrease of 0.02% on carbon monoxide (CO). Addition of nanoparticles in biodiesel show positive improvements when used in diesel engines and further details were discussed.  


Author(s):  
Petar Kazakov ◽  
Atanas Iliev ◽  
Emil Marinov

Over the decades, more attention has been paid to emissions from the means of transport and the use of different fuels and combustion fuels for the operation of internal combustion engines than on fuel consumption. This, in turn, enables research into products that are said to reduce fuel consumption. The report summarizes four studies of fuel-related innovation products. The studies covered by this report are conducted with diesel fuel and usually contain diesel fuel and three additives for it. Manufacturers of additives are based on already existing studies showing a 10-30% reduction in fuel consumption. Comparative experimental studies related to the use of commercially available diesel fuel with and without the use of additives have been performed in laboratory conditions. The studies were carried out on a stationary diesel engine СМД-17КН equipped with brake КИ1368В. Repeated results were recorded, but they did not confirm the significant positive effect of additives on specific fuel consumption. In some cases, the factors affecting errors in this type of research on the effectiveness of fuel additives for commercial purposes are considered. The reasons for the positive effects of such use of additives in certain engine operating modes are also clarified.


Author(s):  
Jhan Piero Rojas ◽  
Guillermo Valencia Ochoa ◽  
Jorge Duarte Forero
Keyword(s):  

2017 ◽  
Vol 11 (4) ◽  
pp. 213
Author(s):  
Mohamad Nordin Mohamad Norani ◽  
Boon Tuan Tee ◽  
Zakaria Muhammad Zulfattah ◽  
Mohamad Norani Mansor ◽  
Md Isa Ali

1996 ◽  
Vol 6 (1) ◽  
pp. 95-109 ◽  
Author(s):  
H. C. Yang ◽  
Hong Sun Ryou ◽  
Y. T. Jeong ◽  
Young Ki Choi

Sign in / Sign up

Export Citation Format

Share Document