scholarly journals Structural similarity in the absence of sequence homology of the messenger RNA export factors Mtr2 and p15

EMBO Reports ◽  
2003 ◽  
Vol 4 (7) ◽  
pp. 699-703 ◽  
Author(s):  
Sébastien Fribourg ◽  
Elena Conti
2000 ◽  
Vol 20 (23) ◽  
pp. 8996-9008 ◽  
Author(s):  
Andrea Herold ◽  
Mikita Suyama ◽  
João P. Rodrigues ◽  
Isabelle C. Braun ◽  
Ulrike Kutay ◽  
...  

ABSTRACT Vertebrate TAP (also called NXF1) and its yeast orthologue, Mex67p, have been implicated in the export of mRNAs from the nucleus. The TAP protein includes a noncanonical RNP-type RNA binding domain, four leucine-rich repeats, an NTF2-like domain that allows heterodimerization with p15 (also called NXT1), and a ubiquitin-associated domain that mediates the interaction with nucleoporins. Here we show that TAP belongs to an evolutionarily conserved family of proteins that has more than one member in higher eukaryotes. Not only the overall domain organization but also residues important for p15 and nucleoporin interaction are conserved in most family members. We characterize two of four human TAP homologues and show that one of them, NXF2, binds RNA, localizes to the nuclear envelope, and exhibits RNA export activity. NXF3, which does not bind RNA or localize to the nuclear rim, has no RNA export activity. Database searches revealed that although only one p15(nxt) gene is present in the Drosophila melanogaster and Caenorhabditis elegans genomes, there is at least one additional p15 homologue (p15-2 [also called NXT2]) encoded by the human genome. Both human p15 homologues bind TAP, NXF2, and NXF3. Together, our results indicate that the TAP-p15 mRNA export pathway has diversified in higher eukaryotes compared to yeast, perhaps reflecting a greater substrate complexity.


2020 ◽  
Vol 31 ◽  
pp. S38
Author(s):  
C. Klec ◽  
D. Schwarzenbacher ◽  
B. Gottschalk ◽  
R. Margit ◽  
F. Prinz ◽  
...  

Traffic ◽  
2009 ◽  
Vol 10 (9) ◽  
pp. 1199-1208 ◽  
Author(s):  
Seth M. Kelly ◽  
Anita H. Corbett
Keyword(s):  

2009 ◽  
Vol 184 (6) ◽  
pp. 833-846 ◽  
Author(s):  
Marius Boulos Faza ◽  
Stefan Kemmler ◽  
Sonia Jimeno ◽  
Cristina González-Aguilera ◽  
Andrés Aguilera ◽  
...  

The evolutionarily conserved protein Sem1/Dss1 is a subunit of the regulatory particle (RP) of the proteasome, and, in mammalian cells, binds the tumor suppressor protein BRCA2. Here, we describe a new function for yeast Sem1. We show that sem1 mutants are impaired in messenger RNA (mRNA) export and transcription elongation, and induce strong transcription-associated hyper-recombination phenotypes. Importantly, Sem1, independent of the RP, is functionally linked to the mRNA export pathway. Biochemical analyses revealed that, in addition to the RP, Sem1 coenriches with components of two other multisubunit complexes: the nuclear pore complex (NPC)-associated TREX-2 complex that is required for transcription-coupled mRNA export, and the COP9 signalosome, which is involved in deneddylation. Notably, targeting of Thp1, a TREX-2 component, to the NPC is perturbed in a sem1 mutant. These findings reveal an unexpected nonproteasomal function of Sem1 in mRNA export and in prevention of transcription-associated genome instability. Thus, Sem1 is a versatile protein that might stabilize multiple protein complexes involved in diverse pathways.


Sign in / Sign up

Export Citation Format

Share Document