Assaying Nuclear Messenger RNA Export in Human Cells

2004 ◽  
pp. 085-092 ◽  
Author(s):  
Bryan R. Cullen
Keyword(s):  
Genome ◽  
1989 ◽  
Vol 31 (1) ◽  
pp. 386-389 ◽  
Author(s):  
James R. Smith ◽  
Olivia M. Pereira-Smith

The limited division potential of normal human diploid fibroblasts in culture represents a model system for cellular aging. Observations indicate cellular senescence is an active process. Senescent cells, although unable to divide, are actively metabolizing. Hybrids from fusion of normal and immortal human cells exhibit limited division potential, suggesting that the phenotype of cellular senescence is dominant and supporting the hypothesis that senescence is genetically programmed. Fusion of immortal human cell lines with each other has identified four complementation groups for indefinite division. This indicates that a limited number of specific genes or processes are involved in senescence. Senescent cells express highly abundant DNA synthesis inhibitory messenger RNAs and produce a surface membrane associated protein inhibitor of DNA synthesis not expressed in young cells. Senescent cell membranes were used as immunogen to generate three monoclonal antibodies reacting specifically with senescent but not young cells in several normal human cell lines. We have also found that fibronectin messenger RNA accumulates to high levels in senescent cells. The role of these changes in gene expression in senescence is being explored.Key words: cellular senescence, human cells.


Traffic ◽  
2009 ◽  
Vol 10 (9) ◽  
pp. 1199-1208 ◽  
Author(s):  
Seth M. Kelly ◽  
Anita H. Corbett
Keyword(s):  

2009 ◽  
Vol 184 (6) ◽  
pp. 833-846 ◽  
Author(s):  
Marius Boulos Faza ◽  
Stefan Kemmler ◽  
Sonia Jimeno ◽  
Cristina González-Aguilera ◽  
Andrés Aguilera ◽  
...  

The evolutionarily conserved protein Sem1/Dss1 is a subunit of the regulatory particle (RP) of the proteasome, and, in mammalian cells, binds the tumor suppressor protein BRCA2. Here, we describe a new function for yeast Sem1. We show that sem1 mutants are impaired in messenger RNA (mRNA) export and transcription elongation, and induce strong transcription-associated hyper-recombination phenotypes. Importantly, Sem1, independent of the RP, is functionally linked to the mRNA export pathway. Biochemical analyses revealed that, in addition to the RP, Sem1 coenriches with components of two other multisubunit complexes: the nuclear pore complex (NPC)-associated TREX-2 complex that is required for transcription-coupled mRNA export, and the COP9 signalosome, which is involved in deneddylation. Notably, targeting of Thp1, a TREX-2 component, to the NPC is perturbed in a sem1 mutant. These findings reveal an unexpected nonproteasomal function of Sem1 in mRNA export and in prevention of transcription-associated genome instability. Thus, Sem1 is a versatile protein that might stabilize multiple protein complexes involved in diverse pathways.


2020 ◽  
Vol 54 (1) ◽  
pp. 309-336
Author(s):  
Erin K. Borchardt ◽  
Nicole M. Martinez ◽  
Wendy V. Gilbert

Recent advances in pseudouridine detection reveal a complex pseudouridine landscape that includes messenger RNA and diverse classes of noncoding RNA in human cells. The known molecular functions of pseudouridine, which include stabilizing RNA conformations and destabilizing interactions with varied RNA-binding proteins, suggest that RNA pseudouridylation could have widespread effects on RNA metabolism and gene expression. Here, we emphasize how much remains to be learned about the RNA targets of human pseudouridine synthases, their basis for recognizing distinct RNA sequences, and the mechanisms responsible for regulated RNA pseudouridylation. We also examine the roles of noncoding RNA pseudouridylation in splicing and translation and point out the potential effects of mRNA pseudouridylation on protein production, including in the context of therapeutic mRNAs.


2020 ◽  
Vol 117 (34) ◽  
pp. 20689-20695
Author(s):  
Yaojuan Liu ◽  
Yesenia Rodriguez ◽  
Robert L. Ross ◽  
Ruoxia Zhao ◽  
Jason A. Watts ◽  
...  

RNA abasic sites and the mechanisms involved in their regulation are mostly unknown; in contrast, DNA abasic sites are well-studied. We found surprisingly that, in yeast and human cells, RNA abasic sites are prevalent. When a base is lost from RNA, the remaining ribose is found as a closed-ring or an open-ring sugar with a reactive C1′ aldehyde group. Using primary amine-based reagents that react with the aldehyde group, we uncovered evidence for abasic sites in nascent RNA, messenger RNA, and ribosomal RNA from yeast and human cells. Mass spectroscopic analysis confirmed the presence of RNA abasic sites. The RNA abasic sites were found to be coupled to R-loops. We show that human methylpurine DNA glycosylase cleaves N-glycosidic bonds on RNA and that human apurinic/apyrimidinic endonuclease 1 incises RNA abasic sites in RNA–DNA hybrids. Our results reveal that, in yeast and human cells, there are RNA abasic sites, and we identify a glycosylase that generates these sites and an AP endonuclease that processes them.


2006 ◽  
Vol 21 (3) ◽  
pp. 437-443 ◽  
Author(s):  
Steven West ◽  
Natalia Gromak ◽  
Christopher J. Norbury ◽  
Nicholas J. Proudfoot
Keyword(s):  

2020 ◽  
Vol 4 (7) ◽  
pp. 1270-1283 ◽  
Author(s):  
Stéphane Chappaz ◽  
Charity W. Law ◽  
Mark R. Dowling ◽  
Kirstyn T. Carey ◽  
Rachael M. Lane ◽  
...  

Abstract In eukaryotic cells, messenger RNA (mRNA) molecules are exported from the nucleus to the cytoplasm, where they are translated. The highly conserved protein nuclear RNA export factor1 (Nxf1) is an important mediator of this process. Although studies in yeast and in human cell lines have shed light on the biochemical mechanisms of Nxf1 function, its contribution to mammalian physiology is less clear. Several groups have identified recurrent NXF1 mutations in chronic lymphocytic leukemia (CLL), placing it alongside several RNA-metabolism factors (including SF3B1, XPO, RPS15) whose dysregulation is thought to contribute to CLL pathogenesis. We report here an allelic series of germline point mutations in murine Nxf1. Mice heterozygous for these loss-of-function Nxf1 mutations exhibit thrombocytopenia and lymphopenia, together with milder hematological defects. This is primarily caused by cell-intrinsic defects in the survival of platelets and peripheral lymphocytes, which are sensitized to intrinsic apoptosis. In contrast, Nxf1 mutations have almost no effect on red blood cell homeostasis. Comparative transcriptome analysis of platelets, lymphocytes, and erythrocytes from Nxf1-mutant mice shows that, in response to impaired Nxf1 function, the cytoplasmic representation of transcripts encoding regulators of RNA metabolism is altered in a unique, lineage-specific way. Thus, blood cell lineages exhibit differential requirements for Nxf1-mediated global mRNA export.


Sign in / Sign up

Export Citation Format

Share Document