cancer metabolism
Recently Published Documents


TOTAL DOCUMENTS

887
(FIVE YEARS 408)

H-INDEX

70
(FIVE YEARS 18)

2022 ◽  
Vol 2022 ◽  
pp. 1-30
Author(s):  
Qiuxiang Chen ◽  
Xiaojing Du ◽  
Sunkuan Hu ◽  
Qingke Huang

Background. Sufficient evidence indicated the crucial role of NF-κB family played in gastric cancer (GC). The novel discovery that NF-κB could regulate cancer metabolism and immune evasion greatly increased its attraction in cancer research. However, the correlation among NF-κB, metabolism, and cancer immunity in GC still requires further improvement. Methods. TCGA, hTFtarget, and MSigDB databases were employed to identify NF-κB-related metabolic genes (NFMGs). Based on NFMGs, we used consensus clustering to divide GC patients into two subtypes. GSVA was employed to analyze the enriched pathway. ESTIMATE, CIBERSORT, ssGSEA, and MCPcounter algorithms were applied to evaluate immune infiltration in GC. The tumor immune dysfunction and exclusion (TIDE) algorithm was used to predict patients’ response to immunotherapy. We also established a NFMG-related risk score by using the LASSO regression model and assessed its efficacy in TCGA and GSE62254 datasets. Results. We used 27 NFMGs to conduct an unsupervised clustering on GC samples and classified them into two clusters. Cluster 1 was characterized by high active metabolism, tumor mutant burden, and microsatellite instability, while cluster 2 was featured with high immune infiltration. Compared to cluster 2, cluster 1 had a better prognosis and higher response to immunotherapy. In addition, we constructed a 12-NFMG (ADCY3, AHCY, CHDH, GUCY1A2, ITPA, MTHFD2, NRP1, POLA1, POLR1A, POLR3A, POLR3K, and SRM) risk score. Followed analysis indicated that this risk score acted as an effectively prognostic factor in GC. Conclusion. Our data suggested that GC subtypes classified by NFMGs may effectively guide prognosis and immunotherapy. Further study of these NFMGs will deepen our understanding of NF-κB-mediated cancer metabolism and immunity.


Author(s):  
Miaomiao Huo ◽  
Jingyao Zhang ◽  
Wei Huang ◽  
Yan Wang

Epigenetic modifications and metabolism are two fundamental biological processes. During tumorigenesis and cancer development both epigenetic and metabolic alterations occur and are often intertwined together. Epigenetic modifications contribute to metabolic reprogramming by modifying the transcriptional regulation of metabolic enzymes, which is crucial for glucose metabolism, lipid metabolism, and amino acid metabolism. Metabolites provide substrates for epigenetic modifications, including histone modification (methylation, acetylation, and phosphorylation), DNA and RNA methylation and non-coding RNAs. Simultaneously, some metabolites can also serve as substrates for nonhistone post-translational modifications that have an impact on the development of tumors. And metabolic enzymes also regulate epigenetic modifications independent of their metabolites. In addition, metabolites produced by gut microbiota influence host metabolism. Understanding the crosstalk among metabolism, epigenetic modifications, and gene expression in cancer may help researchers explore the mechanisms of carcinogenesis and progression to metastasis, thereby provide strategies for the prevention and therapy of cancer. In this review, we summarize the progress in the understanding of the interactions between cancer metabolism and epigenetics.


Author(s):  
E. Kenneth Parkinson ◽  
Jerzy Adamski ◽  
Grit Zahn ◽  
Andreas Gaumann ◽  
Fabian Flores-Borja ◽  
...  

Abstract It is well established that cancer cells acquire energy via the Warburg effect and oxidative phosphorylation. Citrate is considered to play a crucial role in cancer metabolism by virtue of its production in the reverse Krebs cycle from glutamine. Here, we review the evidence that extracellular citrate is one of the key metabolites of the metabolic pathways present in cancer cells. We review the different mechanisms by which pathways involved in keeping redox balance respond to the need of intracellular citrate synthesis under different extracellular metabolic conditions. In this context, we further discuss the hypothesis that extracellular citrate plays a role in switching between oxidative phosphorylation and the Warburg effect while citrate uptake enhances metastatic activities and therapy resistance. We also present the possibility that organs rich in citrate such as the liver, brain and bones might form a perfect niche for the secondary tumour growth and improve survival of colonising cancer cells. Consistently, metabolic support provided by cancer-associated and senescent cells is also discussed. Finally, we highlight evidence on the role of citrate on immune cells and its potential to modulate the biological functions of pro- and anti-tumour immune cells in the tumour microenvironment. Collectively, we review intriguing evidence supporting the potential role of extracellular citrate in the regulation of the overall cancer metabolism and metastatic activity.


Author(s):  
Sara Abdul Kader ◽  
Shaima Dib ◽  
Iman W. Achkar ◽  
Gaurav Thareja ◽  
Karsten Suhre ◽  
...  

AbstractMetastasis is the primary cause of cancer related deaths due to the limited number of efficient druggable targets. Signatures of dysregulated cancer metabolism could serve as a roadmap for the determination of new treatment strategies. However, the metabolic signatures of metastatic cells remain vastly elusive. Our aim was to determine metabolic dysregulations associated with high metastatic potential in breast cancer cell lines. We have selected 5 triple negative breast cancer (TNBC) cell lines including three with high metastatic potential (HMP) (MDA-MB-231, MDA-MB-436, MDA-MB-468) and two with low metastatic potential (LMP) (BT549, HCC1143). The normal epithelial breast cell line (hTERT-HME1) was also investigated. The untargeted metabolic profiling of cells and growth media was conducted and total of 479 metabolites were quantified. First we characterized metabolic features differentiating TNBC cell lines from normal cells as well as identified cell line specific metabolic fingerprints. Next, we determined 92 metabolites in cells and 22 in growth medium that display significant differences between LMP and HMP. The HMP cell lines had elevated level of molecules involved in glycolysis, TCA cycle and lipid metabolism. We identified metabolic advantages of cell lines with HMP beyond enhanced glycolysis by pinpointing the role of branched chain amino acids (BCAA) catabolism as well as molecules supporting coagulation and platelet activation as important contributors to the metastatic cascade. The landscape of metabolic dysregulations, characterized in our study, could serve as a roadmap for the identification of treatment strategies targeting cancer cells with enhanced metastatic potential.


2021 ◽  
Author(s):  
Shodai Mizuno ◽  
Ryo Seishima ◽  
Juntaro Yamasaki ◽  
Kaoru Hattori ◽  
Masayo Ogiri ◽  
...  

Abstract Purpose Angiopoietin-like 4 (ANGPTL4) was recently shown to be associated with cancer progression but little is known about its contribution to cancer metabolism. The purpose of this study was to elucidate the role of ANGPTL4 in glucose metabolism in colorectal cancer (CRC). Methods Immunohistochemical staining of CRC specimens classified 84 patients into two groups according to ANGPTL4 expression. Clinicopathological characteristics, gene mutation status obtained by next-generation sequencing, and fluorodeoxyglucose (FDG) uptake measured by positron emission tomography/computed tomography (PET/CT) were compared between the two groups. Furthermore, the impact of ANGPTL4 expression on cancer metabolism was investigated by a subcutaneous xenograft mouse model using the ANGPTL4 knockout CRC cell line and glucose transporter (GLUT) expression was evaluated. Results There were significantly more cases of T3/4 tumours (94.3% vs. 57.1%, P < 0.001) and perineural invasion (42.9% vs. 22.4%, P = 0.046) in the ANGPTL4-high group than in the low group. Genetic exploration revealed a higher frequency of KRAS mutation (54.3% vs. 22.4%, P = 0.003) in the ANGPTL4-high tumours. All the FDG uptake parameters were significantly higher in ANGPTL4-high tumours. In vivo analysis showed a significant reduction in tumor size due to ANGPTL4 knockout with lower expression of GLUT1 and GLUT3, and suppression of AKT phosphorylation. Conclusion ANGPTL4 regulates the expression of GLUTs by activating the PI3K-AKT pathway and thereby promoting glucose metabolism in CRC. These findings establish a new functional role of ANGPTL4 in cancer progression and lay the foundation for developing a novel therapeutic target.


2021 ◽  
Author(s):  
Oveis Jamialahmadi ◽  
Ehsan Salehabadi ◽  
Sameereh Hashemi-Najafabadi ◽  
Ehsan Motamedian ◽  
Fatemeh Bagheri ◽  
...  

Abstract Hepatocellular carcinoma is the third leading cause of cancer related mortality worldwide. Often this hepatic cancer is associated with fatty liver disease and insulin resistance with genetic predisposition are its major driver. Genome-scale metabolic modeling (GEM) is a promising approach to understand cancer metabolism and to identify new drug targets. Here, we used TRFBA-CORE, an algorithm generating a model using key growth-correlated reactions. Specifically, we generated a HepG2 cell-specific GEM by integrating this cell line transcriptomic data with a generic human metabolic model to predict potential drug targets for hepatocellular carcinoma (HCC). A total of 108 essential genes for growth were predicted by TRFBA-CORE. These genes were enriched for metabolic pathways involved in cholesterol, sterols and steroids biosynthesis. Furthermore, we silenced a predicted essential gene, 11-beta dehydrogenase hydroxysteroid type 2 (HSD11B2), in HepG2 cells resulting in a reduction in cell viability. To further identify novel potential drug targets in HCC, we examined the effect of 9 drugs targeting the essential genes, and observed that most drugs inhibited the growth of HepG2 cells. Interestingly, some of these drugs in this model performed better than Sorafenib, the first line therapeutic against HCC.


Sign in / Sign up

Export Citation Format

Share Document