scholarly journals Evolution of the self-incompatibility system in the Brassicaceae: identification of S-locus receptor kinase (SRK) in self-incompatible Capsella grandiflora

Heredity ◽  
2006 ◽  
Vol 97 (4) ◽  
pp. 283-290 ◽  
Author(s):  
M Paetsch ◽  
S Mayland-Quellhorst ◽  
B Neuffer
2019 ◽  
Vol 51 (7) ◽  
pp. 723-733 ◽  
Author(s):  
Songmei Shi ◽  
Qiguo Gao ◽  
Tonghong Zuo ◽  
Zhenze Lei ◽  
Quanming Pu ◽  
...  

Abstract Armadillo repeat containing 1 (ARC1) is phosphorylated by S-locus receptor kinase (SRK) and functions as a positive regulator in self-incompatibility response of Brassica. However, ARC1 only causes partial breakdown of the self-incompatibility response, and other SRK downstream factors may also participate in the self-incompatibility signaling pathway. In the present study, to search for SRK downstream targets, a plant U-box protein 3 (BoPUB3) was identified from the stigma of Brassica oleracea L. BoPUB3 was highly expressed in the stigma, and its expression was increased with the stigma development and reached to the highest level in the mature-stage stigma. BoPUB3, a 76.8-kDa protein with 697 amino acids, is a member of the PUB-ARM family and contains three domain characteristics of BoARC1, including a U-box N-terminal domain, a U-box motif, and a C-terminal arm repeat domain. The phylogenic tree showed that BoPUB3 was close to BoARC1. The synteny analysis revealed that B. oleracea chromosomal region containing BoPUB3 had high synteny with the Arabidopsis thaliana chromosomal region containing AtPUB3 (At3G54790). In addition, the subcellular localization analysis showed that BoPUB3 primarily localized in the plasma membrane and also in the cytoplasm. The combination of the yeast two-hybrid and in vitro binding assay showed that both BoPUB3 and BoARC1 could interact with SRK kinase domain, and SRK showed much higher level of β-galactosidase activity in its interaction with BoPUB3 than with BoARC1. These results implied that BoPUB3 is a novel interactor with SRK, which lays a basis for further research on whether PUB3 participates in the self-incompatibility signaling pathway.


2014 ◽  
Vol 26 (12) ◽  
pp. 4749-4762 ◽  
Author(s):  
Masaya Yamamoto ◽  
Titima Tantikanjana ◽  
Takeshi Nishio ◽  
Mikhail E. Nasrallah ◽  
June B. Nasrallah

1998 ◽  
Vol 10 (2) ◽  
pp. 209-218 ◽  
Author(s):  
Richard J. Stahl ◽  
MaryAnne Arnoldo ◽  
Tracy L. Glavin ◽  
Daphne R. Goring ◽  
Steven J. Rothstein

2014 ◽  
Vol 42 (2) ◽  
pp. 313-319 ◽  
Author(s):  
June B. Nasrallah ◽  
Mikhail E. Nasrallah

SRK (S-locus receptor kinase) is the receptor that allows stigma epidermal cells to discriminate between genetically related (‘self’) and genetically unrelated (‘non-self’) pollen in the self-incompatibility response of the Brassicaceae. SRK and its ligand, the pollen coat-localized SCR (S-locus cysteine-rich protein), are highly polymorphic, and their allele-specific interaction explains specificity in the self-incompatibility response. The present article reviews current knowledge of the role of SRK in the recognition and response phases of self-incompatibility, and highlights the new insights provided by analysis of a transgenic self-incompatible Arabidopsis thaliana model.


Genetics ◽  
2001 ◽  
Vol 159 (2) ◽  
pp. 811-822
Author(s):  
Christine Miege ◽  
Véronique Ruffio-Châble ◽  
Mikkel H Schierup ◽  
Didier Cabrillac ◽  
Christian Dumas ◽  
...  

Abstract The S locus receptor kinase and the S locus glycoproteins are encoded by genes located at the S locus, which controls the self-incompatibility response in Brassica. In class II self-incompatibility haplotypes, S locus glycoproteins can be encoded by two different genes, SLGA and SLGB. In this study, we analyzed the sequences of these genes in several independently isolated plants, all of which carry the same S haplotype (S2). Two groups of S2 haplotypes could be distinguished depending on whether SRK was associated with SLGA or SLGB. Surprisingly, SRK alleles from the two groups could be distinguished at the sequence level, suggesting that recombination rarely occurs between haplotypes of the two groups. An analysis of the distribution of polymorphisms along the S domain of SRK showed that hypervariable domains I and II tend to be conserved within haplotypes but to be highly variable between haplotypes. This is consistent with these domains playing a role in the determination of haplotype specificity.


1998 ◽  
Vol 10 (2) ◽  
pp. 209
Author(s):  
Richard J. Stahl ◽  
Mary Anne Arnoldo ◽  
Tracy L. Glavin ◽  
Daphne R. Goring ◽  
Steven J. Rothstein

2009 ◽  
Vol 21 (9) ◽  
pp. 2642-2654 ◽  
Author(s):  
Titima Tantikanjana ◽  
Noreen Rizvi ◽  
Mikhail E. Nasrallah ◽  
June B. Nasrallah

1973 ◽  
Vol 184 (1075) ◽  
pp. 149-165 ◽  

The tryphine that coats the pollen grains of Raphanus is tapetally synthesized and is composed of a fibro-granular and a lipidic component. The fibro-granular material is proteinaceous and is secreted by cisternae of the endoplasmic reticulum. The lipidic component is derived, mainly, from degraded elaioplasts. The fibro-granular material is applied to the pollen exine first, followed by the lipidic mass. The tryphine condenses during the final stages of pollen maturation and dries down to form a thick, highly viscous coating. The major part of the condensation appears to result from dehydration. The tryphine, extracted from the pollen by a centrifugal method and mounted in a membrane, appears to be capable of penetrating the outer layers of a stigma of the same species and, if the pollen from which it was derived is incompatible with respect to the stigma, the stimulation of the production of the callosic reaction body in a manner similar to an incompatible pollen tube. It is proposed that, in Raphanus , substances responsible for the initiation of at least two stages in the self-incompatibility system are held in the tryphine.


Sign in / Sign up

Export Citation Format

Share Document