incompatible pollen
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 8)

H-INDEX

23
(FIVE YEARS 2)

Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1758
Author(s):  
Mariana Oliveira Duarte ◽  
Denise Maria Trombert Oliveira ◽  
Eduardo Leite Borba

In most species of Pleurothallidinae, the self-incompatibility site occurs in the stylar canal inside the column, which is typical of gametophytic self-incompatibility (GSI). However, in some species of Acianthera, incompatible pollen tubes with anomalous morphology reach the ovary, as those are obstructed in the column. We investigated if a distinct self-incompatibility (SI) system is acting on the ovary of A. johannensis, which is a species with partial self-incompatibility, contrasting with a full SI species, A. fabiobarrosii. We analyzed the morphology and development of pollen tubes in the column, ovary, and fruit using light, epifluorescence, and transmission electron microscopy. Our results show that the main reaction site in A. johannensis is in the stylar canal inside the column, which was also recorded in A. fabiobarrosii. Morphological and cytological characteristics of the pollen tubes with obstructed growth in the column indicated a process of programmed cell death in these tubes, showing a possible GSI reaction. In addition, partially self-incompatible individuals of A. johannensis exhibit a second SI site in the ovary. We suggest that this self-incompatibility site in the ovary is only an extension of GSI that acts in the column, differing from the typical late-acting self-incompatibility system recorded in other plant groups.


2020 ◽  
Author(s):  
Stuart R. Macgregor ◽  
Hyun Kyung Lee ◽  
Hayley Nelles ◽  
Daniel C. Johnson ◽  
Tong Zhang ◽  
...  

AbstractSuccessful reproduction in the Brassicaceae is mediated by a complex series of interactions between the pollen and the pistil, and some species have an additional layer of regulation with the self-incompatibility trait. While the initial activation of the self-incompatibility pathway by the pollen S-locus protein11/S-locus cysteine-rich peptide and the stigma S Receptor Kinase is well characterized, the downstream mechanisms causing self-pollen rejection are still not fully understood. In previous studies, we had detected the presence of autophagic bodies with self-incompatible pollinations in Arabidopsis lyrata and transgenic A. thaliana lines, but it was not known if autophagy was essential for self-pollen rejection. Here, we investigated the requirement of autophagy in this response by crossing mutations in the essential AUTOPHAGY7 (ATG7) gene into two different transgenic self-incompatible A. thaliana lines in the Col-0 and C24 accessions. By using these previously characterized transgenic lines that express A. lyrata and A. halleri self-incompatibility genes, we demonstrated that disrupting autophagy can weaken their self-incompatible responses in the stigma. When the atg7 mutation was present, an increased number of self-incompatible pollen were found to hydrate and form pollen tubes that successfully fertilized the self-incompatible pistils. Additionally, we confirmed the presence of GFP-ATG8a labelled autophagosomes in the stigmatic papillae following self-incompatible pollinations. Together, these findings support the requirement of autophagy in the self-incompatibility response and add to the growing understanding of the cellular events that take place in the stigma to reject self-pollen.One Sentence SummaryIn self-incompatible transgenic Arabidopsis thaliana lines, autophagy is an integral part of the cellular responses in the stigma to efficiently block fertilization by self-incompatible pollen.


2020 ◽  
Vol 183 (3) ◽  
pp. 1391-1404
Author(s):  
Tamanna Haque ◽  
Deborah J. Eaves ◽  
Zongcheng Lin ◽  
Cleidiane G. Zampronio ◽  
Helen J. Cooper ◽  
...  

2020 ◽  
Vol 71 (8) ◽  
pp. 2451-2463 ◽  
Author(s):  
Ludi Wang ◽  
Marina Triviño ◽  
Zongcheng Lin ◽  
José Carli ◽  
Deborah J Eaves ◽  
...  

Abstract Pollen tube growth is essential for plant reproduction. Their rapid extension using polarized tip growth provides an exciting system for studying this specialized type of growth. Self-incompatibility (SI) is a genetically controlled mechanism to prevent self-fertilization. Mechanistically, one of the best-studied SI systems is that of Papaver rhoeas (poppy). This utilizes two S-determinants: stigma-expressed PrsS and pollen-expressed PrpS. Interaction of cognate PrpS–PrsS triggers a signalling network, causing rapid growth arrest and programmed cell death (PCD) in incompatible pollen. We previously demonstrated that transgenic Arabidopsis thaliana pollen expressing PrpS–green fluorescent protein (GFP) can respond to Papaver PrsS with remarkably similar responses to those observed in incompatible Papaver pollen. Here we describe recent advances using these transgenic plants combined with genetically encoded fluorescent probes to monitor SI-induced cellular alterations, including cytosolic calcium, pH, the actin cytoskeleton, clathrin-mediated endocytosis (CME), and the vacuole. This approach has allowed us to study the SI response in depth, using multiparameter live-cell imaging approaches that were not possible in Papaver. This lays the foundations for new opportunities to elucidate key mechanisms involved in SI. Here we establish that CME is disrupted in self-incompatible pollen. Moreover, we reveal new detailed information about F-actin remodelling in pollen tubes after SI.


2020 ◽  
Vol 71 (9) ◽  
pp. 2513-2526 ◽  
Author(s):  
Frédérique Rozier ◽  
Lucie Riglet ◽  
Chie Kodera ◽  
Vincent Bayle ◽  
Eléonore Durand ◽  
...  

Abstract Early events occurring at the surface of the female organ are critical for plant reproduction, especially in species with a dry stigma. After landing on the stigmatic papilla cells, the pollen hydrates and germinates a tube, which penetrates the cell wall and grows towards the ovules to convey the male gametes to the embryo sac. In self-incompatible species within the Brassicaceae, these processes are blocked when the stigma encounters an incompatible pollen. Based on the generation of self-incompatible Arabidopsis lines and by setting up a live imaging system, we showed that control of pollen hydration has a central role in pollen selectivity. The faster the pollen pumps water from the papilla during an initial period of 10 min, the faster it germinates. Furthermore, we found that the self-incompatibility barriers act to block the proper hydration of incompatible pollen and, when hydration is promoted by high humidity, an additional control prevents pollen tube penetration into the stigmatic wall. In papilla cells, actin bundles focalize at the contact site with the compatible pollen but not with the incompatible pollen, raising the possibility that stigmatic cells react to the mechanical pressure applied by the invading growing tube.


2019 ◽  
Author(s):  
Frédérique Rozier ◽  
Lucie Riglet ◽  
Chie Kodera ◽  
Vincent Bayle ◽  
Eléonore Durand ◽  
...  

AbstractEarly events occurring at the surface of the female organ are critical for plant reproduction, especially in species with a dry stigma. Following landing on the stigmatic papilla cells, the pollen hydrates and germinates a tube, which penetrates the cell wall and grows towards the ovules to convey the male gametes to the embryo sac. In self-incompatible (SI) species within the Brassicaceae, these processes are blocked when the stigma encounters an incompatible pollen. Here, based on the generation of SI-Arabidopsis lines and by setting up a live imaging system, we showed that control of pollen hydration has a central role in pollen selectivity. The faster pollen pumps water from the papilla during an initial period of 10 minutes, the faster it germinates. Furthermore, we found that the SI barriers act to block the proper hydration of incompatible pollen and when hydration is promoted by high humidity, an additional control prevents pollen tube penetration into the stigmatic wall. In papilla cells, actin bundles focalize at the contact site with the compatible pollen but not with the incompatible one, raising the possibility that stigmatic cells react to the mechanical pressure applied by the invading growing tube.HighlightA live imaging system coupled with self-incompatible Arabidopsis lines highlight the role of stigmatic cells in controlling pollen hydration and in reacting to pollen tube intrusion by remodeling actin cytoskeleton.


Phytotaxa ◽  
2015 ◽  
Vol 217 (1) ◽  
pp. 63
Author(s):  
Anna-Thalassini Valli ◽  
Rea Artelari

Limonium korakonisicum (Plumbaginaceae), a new species from Zakynthos Island (Ionian Islands, Greece), is described and illustrated from the only known population (locality Korakonisi) located in the southwestern coast of the island. The hexaploid chromosome number (2n=6x=51), the karyotype and the self-incompatible pollen-stigma combination A (‘A’pollen and ‘Cob’ stigma), support that L. korakonisicum is an apomictic taxon originated through hybridization. This new taxon is related to the polyploid apomictic Limonium species which are prevalent in the Aegean area and especially to the recently described Cytherian endemic L. spreitzenhoferi Erben & Brullo. The morphological differences of L. korakonisicum from L. spreitzenhoferi as well as from the sexual diploid endemic L. phitosianum, which coexists at the same locality, are discussed. Data on the ecology and conservation status of the new species are also given.


Sign in / Sign up

Export Citation Format

Share Document