scholarly journals The Location of Persistent Amphetamine-Induced Changes in the Density of Dendritic Spines on Medium Spiny Neurons in the Nucleus Accumbens and Caudate-Putamen

2002 ◽  
Vol 28 (6) ◽  
pp. 1082-1085 ◽  
Author(s):  
Yilin Li ◽  
Bryan Kolb ◽  
Terry E Robinson
2015 ◽  
Vol 357 ◽  
pp. e266
Author(s):  
Y. Funamizu ◽  
H. Nishijima ◽  
T. Ueno ◽  
S. Ueno ◽  
S. Yagihashi ◽  
...  

2019 ◽  
Vol 122 (3) ◽  
pp. 1213-1225 ◽  
Author(s):  
Amanda A. Krentzel ◽  
Lily R. Barrett ◽  
John Meitzen

Estradiol acutely facilitates sex differences in striatum-dependent behaviors. However, little is understood regarding the underlying mechanism. In striatal regions in adult rodents, estrogen receptors feature exclusively extranuclear expression, suggesting that estradiol rapidly modulates striatal neurons. We tested the hypothesis that estradiol rapidly modulates excitatory synapse properties onto medium spiny neurons (MSNs) of two striatal regions, the nucleus accumbens core and caudate-putamen in adult female and male rats. We predicted there would be sex-specific differences in pre- and postsynaptic locus and sensitivity. We further analyzed whether MSN intrinsic properties are predictive of estrogen sensitivity. Estradiol exhibited sex-specific acute effects in the nucleus accumbens core: miniature excitatory postsynaptic current (mEPSC) frequency robustly decreased in response to estradiol in female MSNs, and mEPSC amplitude moderately increased in response to estradiol in both male and female MSNs. This increase in mEPSC amplitude is associated with MSNs featuring increased intrinsic excitability. No MSN intrinsic electrical property associated with changes in mEPSC frequency. Estradiol did not acutely modulate mEPSC properties in the caudate-putamen of either sex. This is the first demonstration of acute estradiol action on MSN excitatory synapse function. This demonstration of sex and striatal region-specific acute estradiol neuromodulation revises our understanding of sex hormone action on striatal physiology and resulting behaviors. NEW & NOTEWORTHY This study is the first to demonstrate rapid estradiol neuromodulation of glutamatergic signaling on medium spiny neurons (MSNs), the major output neuron of the striatum. These findings emphasize that sex is a significant biological variable both in MSN sensitivity to estradiol and in pre- and postsynaptic mechanisms of glutamatergic signaling. MSNs in different regions exhibit diverse responses to estradiol. Sex- and region-specific estradiol-induced changes to excitatory signaling on MSNs explain sex differences partially underlying striatum-mediated behaviors and diseases.


2017 ◽  
Vol 114 (19) ◽  
pp. 5029-5034 ◽  
Author(s):  
Grietje Krabbe ◽  
S. Sakura Minami ◽  
Jon I. Etchegaray ◽  
Praveen Taneja ◽  
Biljana Djukic ◽  
...  

Frontotemporal dementia (FTD) is the second most common dementia before 65 years of age. Haploinsufficiency in the progranulin (GRN) gene accounts for 10% of all cases of familial FTD. GRN mutation carriers have an increased risk of autoimmune disorders, accompanied by elevated levels of tissue necrosis factor (TNF) α. We examined behavioral alterations related to obsessive–compulsive disorder (OCD) and the role of TNFα and related signaling pathways in FTD patients with GRN mutations and in mice lacking progranulin (PGRN). We found that patients and mice with GRN mutations displayed OCD and self-grooming (an OCD-like behavior in mice), respectively. Furthermore, medium spiny neurons in the nucleus accumbens, an area implicated in development of OCD, display hyperexcitability in PGRN knockout mice. Reducing levels of TNFα in PGRN knockout mice abolished excessive self-grooming and the associated hyperexcitability of medium spiny neurons of the nucleus accumbens. In the brain, PGRN is highly expressed in microglia, which are a major source of TNFα. We therefore deleted PGRN specifically in microglia and found that it was sufficient to induce excessive grooming. Importantly, excessive grooming in these mice was prevented by inactivating nuclear factor κB (NF-κB) in microglia/myeloid cells. Our findings suggest that PGRN deficiency leads to excessive NF-κB activation in microglia and elevated TNFα signaling, which in turn lead to hyperexcitability of medium spiny neurons and OCD-like behavior.


2020 ◽  
Vol 87 (11) ◽  
pp. 992-1000 ◽  
Author(s):  
Michel Engeln ◽  
Swarup Mitra ◽  
Ramesh Chandra ◽  
Utsav Gyawali ◽  
Megan E. Fox ◽  
...  

2017 ◽  
Vol 116 ◽  
pp. 224-232 ◽  
Author(s):  
Craig T. Werner ◽  
Conor H. Murray ◽  
Jeremy M. Reimers ◽  
Niravkumar M. Chauhan ◽  
Kenneth K.Y. Woo ◽  
...  

Author(s):  
Braulio Muñoz ◽  
Gonzalo E. Yevenes ◽  
Benjamin Förstera ◽  
David M. Lovinger ◽  
Luis G. Aguayo

2006 ◽  
Vol 96 (4) ◽  
pp. 2034-2041 ◽  
Author(s):  
Mischa de Rover ◽  
Johannes C. Lodder ◽  
Marten P. Smidt ◽  
Arjen B. Brussaard

We investigated to what extent Pitx3 deficiency, causing hyperdopaminergic transmission in the nucleus accumbens microcircuitry, may lead to developmental changes. First, spontaneous firing activity of cholinergic interneurons in the nucleus accumbens was recorded in vitro. Firing patterns in the Pitx3-deficient mice were more variable and intrinsically different from those observed in wild-type mice. Next, to test whether the irregular firing patterns observed in mutant mice affected the endogenous nicotinic modulation of the GABAergic input of medium spiny neurons, we recorded spontaneous GABAergic inputs to these cells before and after the application of the nicotinic receptor blocker mecamylamine. Effects of mecamylamine were found in slices of either genotype, but in a rather inconsistent manner. Possibly this was attributable to heterogeneity in firing of nearby cholinergic interneurons. Thus paired recordings of cholinergic interneurons and medium spiny neurons were performed to more precisely control the experimental conditions of the cholinergic modulation of GABAergic synaptic transmission. We found that controlling action potential firing in cholinergic neurons leads to a conditional increase in GABAergic input frequency in wild-type mice but not in Pitx3-deficient mice. We conclude that Pitx3-deficient mice have neural adaptations at the level of the nucleus accumbens microcircuitry that in turn may have behavioral consequences. It is discussed to what extent dopamine release in the nucleus accumbens may be a long-term gating mechanism leading to alterations in cholinergic transmission in the nucleus accumbens, in line with previously reported neural adaptations found as consequences of repeated drug treatment in rodents.


Sign in / Sign up

Export Citation Format

Share Document