scholarly journals RNA-interference-based functional genomics in mammalian cells: reverse genetics coming of age

Oncogene ◽  
2004 ◽  
Vol 23 (51) ◽  
pp. 8401-8409 ◽  
Author(s):  
Jose Silva ◽  
Kenneth Chang ◽  
Gregory J Hannon ◽  
Fabiola V Rivas
2004 ◽  
Vol 380 (3) ◽  
pp. 593-603 ◽  
Author(s):  
René H. MEDEMA

Over the last 2 years, the scientific community has rapidly embraced novel technologies that allow gene silencing in vertebrates. Ease of application, cost effectiveness and the possibilities for genome-wide reverse genetics have quickly turned this approach into a widely accepted, almost mandatory asset for a self-respecting laboratory in life sciences. This review discusses some of the recent technological developments that allow the application of RNAi (RNA interference) in mammalian cells. In addition, the advantages of applying RNAi to study cell cycle events and the emerging approaches to perform mutational analysis by complementation in mammalian cells are evaluated. In addition, common pitfalls and drawbacks of RNAi will be reviewed, as well as the possible ways to get around these shortcomings of gene silencing by small interfering RNA.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2778-2778
Author(s):  
Michaela Scherr ◽  
Karin Battmer ◽  
Anuhar Chaturvedi ◽  
Beate Schultheis ◽  
Arnold Ganser ◽  
...  

Abstract RNA interference (RNAi) has rapidly evolved into an efficient tool for functional genomics in a variety of organisms. Stable expression of shRNA (short hairpin RNA) driven by pol III promoters upon retro- or lentiviral gene transfer can induce long-term gene silencing in mammalian cells, including human hematopoietic cells. We recently demonstrated that lentivirus mediated anti bcr-abl RNAi can specifically silence bcr-abl gene expression, inhibit oncogene driven cell proliferation, and eradicate leukemic cells depending on the dose of lentivirus-mediated shRNA expression (Scherr et al. Gene Therapy 2004). Since effective depletion requires a threshold of lentiviral integrations into target cell genomes, the risk of insertional mutagenesis may limit the therapeutic value of this approach. We therefore applied lentivirus-mediated RNAi for functional genomics in purified primary normal and CD34+ cells from chronic phase CML patients harvested at initial diagnosis. Several SHP-2 shRNAs were generated according to established rules and were functionally evaluated using a bicistronic reporter system as described earlier. Effective shRNA expression cassettes were subsequently cloned into lentiviral plasmids encoding RFP to track lentiviral transduction. Transduction of K562, U937, NB-4 and TF-1 cells with lentiviral supernatants results in a reduction of SHP-2 mRNA and protein by more than 90 %. Interestingly, anti-SHP-2 shRNA induced almost complete depletion of RFP+ cells in all four cell lines, demonstrating that SHP-2 expression is essential for proliferation and survival in these cells. We next transduced normal and CML-derived CD34+ cells with a puritiy of > 95% with control and anti-SHP-2 lentiviruses, and stimulated methylcellulose cultures of the cells with high (GM-CSF: 20 ng/ml; IL-3: 10 ng/ml) or low (GM-CSF: 0.2 ng/ml; IL-3: 0.1 ng/ml) cytokine concentrations. This assay relies on the fact that colony formation of CML-CFU is mediated by both cytokine receptor and bcr-abl signaling. Therefore differential numbers of transduced, i.e. RFP+ colonies under different cytokine stimulations reflect the role of the RNAi-target in normal or malignant CFU. Whereas anti-SHP-2 RNAi did not reduce the proliferation of normal transduced CFU (n=5), proliferation of CFU from CML patients was specifically reduced between 50 to 85 % under low cytokine concentration (n= 9). These data suggest that primary normal cells are more resistant to inhibition of SHP-2 gene expression than leukemic cell lines and CD34+ cells from CML patients and identify SHP-2 as a potential target for anti bcr-abl therapy.


2003 ◽  
Vol 4 (8) ◽  
pp. 699-711 ◽  
Author(s):  
Ron Dirks ◽  
Gerrit Bouw ◽  
Rick Huizen ◽  
Eric Jansen ◽  
Gerard Martens

2016 ◽  
Vol 106 (10) ◽  
pp. 1231-1239 ◽  
Author(s):  
Vincent N. Fondong ◽  
Ugrappa Nagalakshmi ◽  
Savithramma P. Dinesh-Kumar

Advances in functional genomics and genome editing approaches have provided new opportunities and potential to accelerate plant virus control efforts through modification of host and viral genomes in a precise and predictable manner. Here, we discuss application of RNA-based technologies, including artificial micro RNA, transacting small interfering RNA, and Cas9 (clustered regularly interspaced short palindromic repeat–associated protein 9), which are currently being successfully deployed in generating virus-resistant plants. We further discuss the reverse genetics approach, targeting induced local lesions in genomes (TILLING) and its variant, known as EcoTILLING, that are used in the identification of plant virus recessive resistance gene alleles. In addition to describing specific applications of these technologies in plant virus control, this review discusses their advantages and limitations.


2009 ◽  
Vol 17 (6) ◽  
pp. 2441-2446 ◽  
Author(s):  
Nan Zhang ◽  
Chunyan Tan ◽  
Puqin Cai ◽  
Peizhuo Zhang ◽  
Yufen Zhao ◽  
...  

2017 ◽  
Vol 2017 (9) ◽  
pp. pdb.top097550 ◽  
Author(s):  
Katerina Politi ◽  
Narendra Wajapeyee

2016 ◽  
Vol 17 (6) ◽  
pp. 460-475 ◽  
Author(s):  
Anis Ben-Amar ◽  
Samia Daldoul ◽  
Götz M. Reustle ◽  
Gabriele Krczal ◽  
Ahmed Mliki

Sign in / Sign up

Export Citation Format

Share Document