scholarly journals Optimizing RNA interference for application in mammalian cells

2004 ◽  
Vol 380 (3) ◽  
pp. 593-603 ◽  
Author(s):  
René H. MEDEMA

Over the last 2 years, the scientific community has rapidly embraced novel technologies that allow gene silencing in vertebrates. Ease of application, cost effectiveness and the possibilities for genome-wide reverse genetics have quickly turned this approach into a widely accepted, almost mandatory asset for a self-respecting laboratory in life sciences. This review discusses some of the recent technological developments that allow the application of RNAi (RNA interference) in mammalian cells. In addition, the advantages of applying RNAi to study cell cycle events and the emerging approaches to perform mutational analysis by complementation in mammalian cells are evaluated. In addition, common pitfalls and drawbacks of RNAi will be reviewed, as well as the possible ways to get around these shortcomings of gene silencing by small interfering RNA.

Oncogene ◽  
2004 ◽  
Vol 23 (51) ◽  
pp. 8401-8409 ◽  
Author(s):  
Jose Silva ◽  
Kenneth Chang ◽  
Gregory J Hannon ◽  
Fabiola V Rivas

Acta Naturae ◽  
2013 ◽  
Vol 5 (2) ◽  
pp. 7-18 ◽  
Author(s):  
T. D. Lebedev ◽  
P. V. Spirin ◽  
V. S. Prassolov

RNA interference is a convenient tool for modulating gene expression. The widespread application of RNA interference is made difficult because of the imperfections of the methods used for efficient target cell delivery of whatever genes are under study. One of the most convenient and efficient gene transfer and expression systems is based on the use of lentiviral vectors, which direct the synthesis of small hairpin RNAs (shRNAs), the precursors of siRNAs. The application of these systems enables one to achieve sustainable and long-term shRNA expression in cells. This review considers the adaptation of the processing of artificial shRNA to the mechanisms used by cellular microRNAs and simultaneous expression of several shRNAs as potential approaches for producing lentiviral vectors that direct shRNA synthesis. Approaches to using RNA interference for the treatment of cancer, as well as hereditary and viral diseases, are under active development today. The improvement made to the methods for constructing lentiviral vectors and the investigation into the mechanisms of processing of small interfering RNA allow one to now consider lentiviral vectors that direct shRNA synthesis as one of the most promising tools for delivering small interfering RNAs.


2021 ◽  
Author(s):  
Wadim J Kapulkin

RNA-interference (Fire et al. 1998) is a popular ‘reverse-genetics’ screening strategy applied in Caenorhabditis elegans. Genome-wide RNAi screens are presently carried using RNAi feeding libraries. Here, we report on a complementary resource facilitating an approach to RNAi screen relying on an unbiased ‘forward-genetics’ strategy. We conclude the forward RNA interference screening is useful and feasible, with the strong expectation the presented screening mode will complement and extend on the existing, currently available, genome-wide RNAi resources.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3868-3868
Author(s):  
Laurie A. Steiner ◽  
Yelena Maksimova ◽  
Vincent Schulz ◽  
Patrick G. Gallagher

Abstract Abstract 3868 Insulators are DNA sequences and associated binding proteins that establish and/or maintain boundaries between regions of active and silenced chromatin domains. In higher organisms, there are 2 types of insulators, enhancer-blocking insulators, which establish chromatin domains to separate enhancers and promoters, and barrier insulators, which create a barrier to protect against heterochromatin-mediated gene silencing. Despite their role as critical regulators of tissue-specific gene expression, barrier insulators are poorly understood in mammalian cells, with much of our knowledge from studies of the barrier insulator in the chicken β-globin locus, cHS4. The DNA region of cHS4 that functions as a barrier binds upstream stimulatory factor (USF) proteins that recruit histone methyltransferase (HMT) activity, and histone acetyltransferase (HAT) activity, supporting a model that recruitment of enzymes and other proteins associated with activating histone modifications block the mechanism(s) that lead to spreading of gene-silencing. Our goal is to identify a regulatory signature associated with barrier insulators in erythroid cells. We utilized chromatin immunoprecipitation coupled with ultrahigh throughput Solexa sequencing (ChIP-seq) to generate genome-wide maps of regulatory and chromatin modifying proteins in erythroid cells. To generate cells for ChIP, human CD34+ cells were cultured in serum free media with erythropoietin to yield a population of CD71+/GPA+ erythroid cells (R3/R4 population). First, a genome-wide map of USF1 and USF2 occupancy in primary erythroid cells was created. A total of 19213 USF1 and 20115 USF2 sites of occupancy were identified. USF1 and USF2 frequently heterodimerize; co-localization was present at 15882 sites (83% of USF1 and 79% of USF2 sites). USF heterodimers were commonly located near proximal promoters (within 1KB of TSS, 48% of sites) and enhancers (>1kb from RefSeq gene, 30% of sites). To analyze co-localizing barrier-associated arginine methyltransferases from erythroid cells, ChIP-seq was performed with PRMT1 and PRMT4/CARM1. A total of 7062 PRMT1 sites and 15900 PRMT4 sites were identified. PRMT1 and PRMT4 were commonly found at sites of USF occupancy, with 6120 sites demonstrating occupancy of all four factors, consistent with the hypothesis that the USF proteins frequently recruit HMT's in mammalian cells. Sites of PRMT/USF co-occupancy were more likely to be at proximal promoters (68%) than sites of USF occupancy alone. Genome-wide occupancy of four acetyltransferases commonly found in erythroid cells, CBP, p300, PCAF, and SRC1, was also studied using ChIP-seq. 6804, 46932, 25688, and 25833 sites of occupancy were found for CBP, p300, PCAF, and SRC1 respectively. Co-localization with the p300, PCAF, and SRC1 with the USF/PRMT binding sites was common, occurring in 3825 sites. These sites were most commonly located near proximal promoters (71%) and enhancers (17%). In contrast, CBP co-localized with the USF/PRMT/p300/PCAF/SRC regions in only 10 locations and sites of CBP occupancy were more commonly found at enhancers (64%) and introns (29%) than at promoters (0.4%). Detection of barrier insulators near gene promoters is not surprising. Recent studies have revealed many similarities between barriers and promoters, including binding of specific transcription factors, and have led to the suggestion that barrier insulators have evolved as specialized derivatives of gene promoters, each with specific, yet discrete function. The regulatory protein CTCF mediates enhancer-blocking insulator activity. ChIP-seq was utilized to create a genome-wide map of CTCF binding in erythroid cells. 38503 sites of CTCF occupancy were identified. These sites were located at enhancers (41%), introns, (28%) and proximal promoters (18%). 4459 CTCF sites (12%) co-localized with regions of USF/PRMT/p300/PCAF/SRC binding. These sites most commonly occurred at promoters (65%) and enhancers (19%). The role of CTCF in barrier insulator function is controversial; our data are consistent with recent data demonstrating its mark at chromatin boundaries. The signature composed of USF/PRMT/p300/PCAF/SRC/CTCF was found in the well characterized functional erythroid barrier located in the ankyrin-1 gene proximal promoter region. These data indicate that a common regulatory signature is likely associated with barrier elements in erythroid cells. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 101 (10) ◽  
pp. 1069-1078
Author(s):  
Jingfang Mu ◽  
Haobo Zhang ◽  
Tao Li ◽  
Ting Shu ◽  
Yang Qiu ◽  
...  

RNA interference (RNAi) is a potent antiviral defence mechanism in eukaryotes, and numerous viruses have been found to encode viral suppressors of RNAi (VSRs). Coxsackievirus B3 (CVB3) belongs to the genus Enterovirus in the family Picornaviridae, and has been reported to be a major causative pathogen for viral myocarditis. Despite the importance of CVB3, it is unclear whether CVB3 can also encode proteins that suppress RNAi. Here, we showed that the CVB3 nonstructural protein 3A suppressed RNAi triggered by either small hairpin RNAs (shRNAs) or small interfering RNAs (siRNAs) in mammalian cells. We further uncovered that CVB3 3A interacted directly with double-stranded RNAs (dsRNAs) and siRNAs in vitro. Through mutational analysis, we found that the VSR activity of CVB3 3A was significantly reduced by mutations of D24A/L25A/L26A, Y37A/C38A and R60A in conserved residues. In addition, the 3A protein encoded by coxsackievirus B5 (CVB5), another member of Enterovirus, also showed VSR activity. Taken together, our findings showed that CVB3 3A has in vitro VSR activity, thereby providing insights into the pathogenesis of CVB3 and other enteroviruses.


2005 ◽  
Vol 53 (8) ◽  
pp. 1037-1040 ◽  
Author(s):  
Antje Boll ◽  
Michael Schrader

RNA interference has become a valuable tool to identify and investigate proteins involved in the formation of peroxisomes. We demonstrate that the elongation of peroxisomes serves as an excellent indicator for efficient knock down of dynamin-like protein 1 (DLP1) in mammalian cells. We took advantage of the silencing-dependent morphological changes of peroxisomes to compare different transfection methods and show that a single transfection of DLP1 siRNA by electroporation is sufficient to effectively silence DLP1. We present a fast, easy, and convenient protocol for efficient gene silencing in a large number of cells, which can be used for quantitative and biochemical studies.


2011 ◽  
Vol 79 (6) ◽  
pp. 953-963 ◽  
Author(s):  
Jie Wei ◽  
Jeffrey Jones ◽  
Jing Kang ◽  
Ananda Card ◽  
Michael Krimm ◽  
...  

2020 ◽  
Author(s):  
Min-Sun Song ◽  
John J Rossi

AbstractDicer-substrate siRNA (DsiRNA) was a useful tool for sequence-specific gene silencing. DsiRNA was proposed to have increased efficacy via RNAi gene silencing, but the molecular mechanism underlying the increased efficacy is not precise. We designed the tetra-looped DsiRNA as the tetra-looped RNAs have been reported more stable structure and increased binding efficiency with RNA and protein. To gain a deeper understanding of the Dicer function of DsiRNA, we knocked out Dicer in the HCT116 cell line and analyzed the efficacy of various Dicer substrates on RNAi gene silencing activity. Tetra-looped DsiRNA demonstrated increased efficacy of gene silencing Dicer expressing cells with activity favoring the guide strand. The gene silencing activity of all DsiRNAs was reduced in Dicer knockout cells. Thus, this study allows us to understand the Dicer function of key RNAi silencing and provides valuable resources for RNAi research and applications.


Sign in / Sign up

Export Citation Format

Share Document